Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{0\times \frac{-1}{2}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 0 e 4 para obter 0.
\frac{0\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
A fracción \frac{-1}{2} pode volver escribirse como -\frac{1}{2} extraendo o signo negativo.
\frac{0+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 0 e -\frac{1}{2} para obter 0.
\frac{0+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calcula \frac{5}{6} á potencia de -2 e obtén \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Suma 0 e \frac{36}{25} para obter \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calcula 2 á potencia de -1 e obtén \frac{1}{2}.
\frac{\frac{36}{25}}{\left(1\times 2\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Divide 1 entre \frac{1}{2} mediante a multiplicación de 1 polo recíproco de \frac{1}{2}.
\frac{\frac{36}{25}}{2^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 1 e 2 para obter 2.
\frac{\frac{36}{25}}{\frac{1}{2}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calcula 2 á potencia de -1 e obtén \frac{1}{2}.
\frac{36}{25}\times 2+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Divide \frac{36}{25} entre \frac{1}{2} mediante a multiplicación de \frac{36}{25} polo recíproco de \frac{1}{2}.
\frac{72}{25}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica \frac{36}{25} e 2 para obter \frac{72}{25}.
\frac{72}{25}+\frac{2\times 10^{-6}}{10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Anula 567 no numerador e no denominador.
\frac{72}{25}+2\times 10^{1}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador.
\frac{72}{25}+2\times 10\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calcula 10 á potencia de 1 e obtén 10.
\frac{72}{25}+20\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 2 e 10 para obter 20.
\frac{72}{25}+20\times 0^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 0 e 1 para obter 0.
\frac{72}{25}+20\times 0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Calcula 0 á potencia de 2 e obtén 0.
\frac{72}{25}+0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Multiplica 20 e 0 para obter 0.
\frac{72}{25}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Suma \frac{72}{25} e 0 para obter \frac{72}{25}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Resta \frac{1}{2} de 1 para obter \frac{1}{2}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
A fracción \frac{-1}{4} pode volver escribirse como -\frac{1}{4} extraendo o signo negativo.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
Resta 2 de -\frac{1}{4} para obter -\frac{9}{4}.
\frac{72}{25}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
Divide \frac{1}{2} entre -\frac{9}{4} mediante a multiplicación de \frac{1}{2} polo recíproco de -\frac{9}{4}.
\frac{72}{25}-\left(-\frac{2}{9}\right)^{-1}
Multiplica \frac{1}{2} e -\frac{4}{9} para obter -\frac{2}{9}.
\frac{72}{25}-\left(-\frac{9}{2}\right)
Calcula -\frac{2}{9} á potencia de -1 e obtén -\frac{9}{2}.
\frac{72}{25}+\frac{9}{2}
O contrario de -\frac{9}{2} é \frac{9}{2}.
\frac{369}{50}
Suma \frac{72}{25} e \frac{9}{2} para obter \frac{369}{50}.