Saltar ao contido principal
Calcular
Tick mark Image
Parte real
Tick mark Image

Problemas similares da busca web

Compartir

\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i}
Multiplica os números complexos 130+5915i e 30+1365i igual que se multiplican os binomios.
\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i}
Por definición, i^{2} é -1.
\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i}
Fai as multiplicacións en 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i}
Combina as partes reais e imaxinarias en 3900+177450i+177450i-8073975.
\frac{-8070075+354900i}{130+5915i+30+1365i}
Fai as sumas en 3900-8073975+\left(177450+177450\right)i.
\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i}
Combina as partes reais e imaxinarias en 130+5915i+30+1365i.
\frac{-8070075+354900i}{160+7280i}
Fai as sumas en 130+30+\left(5915+1365\right)i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)}
Multiplica o numerador e o denominador polo conxugado complexo do denominador 160-7280i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}}
A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000}
Por definición, i^{2} é -1. Calcula o denominador.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000}
Multiplica os números complexos -8070075+354900i e 160-7280i igual que se multiplican os binomios.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000}
Por definición, i^{2} é -1.
\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000}
Fai as multiplicacións en -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000}
Combina as partes reais e imaxinarias en -1291212000+58750146000i+56784000i+2583672000.
\frac{1292460000+58806930000i}{53024000}
Fai as sumas en -1291212000+2583672000+\left(58750146000+56784000\right)i.
\frac{195}{8}+\frac{17745}{16}i
Divide 1292460000+58806930000i entre 53024000 para obter \frac{195}{8}+\frac{17745}{16}i.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i})
Multiplica os números complexos 130+5915i e 30+1365i igual que se multiplican os binomios.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i})
Por definición, i^{2} é -1.
Re(\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i})
Fai as multiplicacións en 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
Re(\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i})
Combina as partes reais e imaxinarias en 3900+177450i+177450i-8073975.
Re(\frac{-8070075+354900i}{130+5915i+30+1365i})
Fai as sumas en 3900-8073975+\left(177450+177450\right)i.
Re(\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i})
Combina as partes reais e imaxinarias en 130+5915i+30+1365i.
Re(\frac{-8070075+354900i}{160+7280i})
Fai as sumas en 130+30+\left(5915+1365\right)i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)})
Multiplica o numerador e o denominador de \frac{-8070075+354900i}{160+7280i} polo conxugado complexo do denominador, 160-7280i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}})
A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000})
Por definición, i^{2} é -1. Calcula o denominador.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000})
Multiplica os números complexos -8070075+354900i e 160-7280i igual que se multiplican os binomios.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000})
Por definición, i^{2} é -1.
Re(\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000})
Fai as multiplicacións en -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
Re(\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000})
Combina as partes reais e imaxinarias en -1291212000+58750146000i+56784000i+2583672000.
Re(\frac{1292460000+58806930000i}{53024000})
Fai as sumas en -1291212000+2583672000+\left(58750146000+56784000\right)i.
Re(\frac{195}{8}+\frac{17745}{16}i)
Divide 1292460000+58806930000i entre 53024000 para obter \frac{195}{8}+\frac{17745}{16}i.
\frac{195}{8}
A parte real de \frac{195}{8}+\frac{17745}{16}i é \frac{195}{8}.