Calcular
\frac{139}{24}\approx 5.791666667
Factorizar
\frac{139}{2 ^ {3} \cdot 3} = 5\frac{19}{24} = 5.791666666666667
Compartir
Copiado a portapapeis
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calcular \sqrt[5]{\frac{1}{32}} e obter \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calcula \frac{2}{3} á potencia de -1 e obtén \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divide \frac{1}{2} entre \frac{3}{2} mediante a multiplicación de \frac{1}{2} polo recíproco de \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplica \frac{1}{2} e \frac{2}{3} para obter \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Resta \frac{1}{3} de 1 para obter \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplica \frac{2}{3} e \frac{9}{4} para obter \frac{3}{2}.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Suma \frac{3}{2} e \frac{1}{2} para obter 2.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Expresa \frac{\frac{1}{3}}{2} como unha única fracción.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiplica 3 e 2 para obter 6.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Resta \frac{16}{25} de 1 para obter \frac{9}{25}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reescribe a raíz cadrada da división \frac{9}{25} como a división de raíces cadradas \frac{\sqrt{9}}{\sqrt{25}}. Obtén a raíz cadrada do numerador e o denominador.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Calcula \frac{15}{2} á potencia de 1 e obtén \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Divide \frac{4}{5} entre \frac{15}{2} mediante a multiplicación de \frac{4}{5} polo recíproco de \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{8}{75}}
Multiplica \frac{4}{5} e \frac{2}{15} para obter \frac{8}{75}.
\frac{1}{6}+\frac{3}{5}\times \frac{75}{8}
Divide \frac{3}{5} entre \frac{8}{75} mediante a multiplicación de \frac{3}{5} polo recíproco de \frac{8}{75}.
\frac{1}{6}+\frac{45}{8}
Multiplica \frac{3}{5} e \frac{75}{8} para obter \frac{45}{8}.
\frac{139}{24}
Suma \frac{1}{6} e \frac{45}{8} para obter \frac{139}{24}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}