Resolver x
x=\frac{3\left(x_{5}+520\right)}{8}
Resolver x_5
x_{5}=\frac{8\left(x-195\right)}{3}
Gráfico
Compartir
Copiado a portapapeis
4x\times 3+3x\times 4+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica ambos lados da ecuación por 12, o mínimo común denominador de 3,4,6.
12x+3x\times 4+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica 4 e 3 para obter 12.
12x+12x+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica 3 e 4 para obter 12.
24x+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Combina 12x e 12x para obter 24x.
26x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Combina 24x e 2x para obter 26x.
26x-12x_{5}+24\left(\frac{x}{4}-8\right)=6048
Multiplica 12 e 2 para obter 24.
26x-12x_{5}+24\times \frac{x}{4}-192=6048
Usa a propiedade distributiva para multiplicar 24 por \frac{x}{4}-8.
26x-12x_{5}+6x-192=6048
Descarta o máximo común divisor 4 en 24 e 4.
32x-12x_{5}-192=6048
Combina 26x e 6x para obter 32x.
32x-192=6048+12x_{5}
Engadir 12x_{5} en ambos lados.
32x=6048+12x_{5}+192
Engadir 192 en ambos lados.
32x=6240+12x_{5}
Suma 6048 e 192 para obter 6240.
32x=12x_{5}+6240
A ecuación está en forma estándar.
\frac{32x}{32}=\frac{12x_{5}+6240}{32}
Divide ambos lados entre 32.
x=\frac{12x_{5}+6240}{32}
A división entre 32 desfai a multiplicación por 32.
x=\frac{3x_{5}}{8}+195
Divide 6240+12x_{5} entre 32.
4x\times 3+3x\times 4+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica ambos lados da ecuación por 12, o mínimo común denominador de 3,4,6.
12x+3x\times 4+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica 4 e 3 para obter 12.
12x+12x+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Multiplica 3 e 4 para obter 12.
24x+2x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Combina 12x e 12x para obter 24x.
26x-12x_{5}+12\left(\frac{x}{4}-8\right)\times 2=6048
Combina 24x e 2x para obter 26x.
26x-12x_{5}+24\left(\frac{x}{4}-8\right)=6048
Multiplica 12 e 2 para obter 24.
26x-12x_{5}+24\times \frac{x}{4}-192=6048
Usa a propiedade distributiva para multiplicar 24 por \frac{x}{4}-8.
26x-12x_{5}+6x-192=6048
Descarta o máximo común divisor 4 en 24 e 4.
32x-12x_{5}-192=6048
Combina 26x e 6x para obter 32x.
-12x_{5}-192=6048-32x
Resta 32x en ambos lados.
-12x_{5}=6048-32x+192
Engadir 192 en ambos lados.
-12x_{5}=6240-32x
Suma 6048 e 192 para obter 6240.
\frac{-12x_{5}}{-12}=\frac{6240-32x}{-12}
Divide ambos lados entre -12.
x_{5}=\frac{6240-32x}{-12}
A división entre -12 desfai a multiplicación por -12.
x_{5}=\frac{8x}{3}-520
Divide 6240-32x entre -12.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}