Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Factoriza x^{2}-16. Factoriza 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-4\right)\left(x+4\right) e \left(x-4\right)\left(5x+1\right) é \left(x-4\right)\left(x+4\right)\left(5x+1\right). Multiplica \frac{x+2}{\left(x-4\right)\left(x+4\right)} por \frac{5x+1}{5x+1}. Multiplica \frac{4}{\left(x-4\right)\left(5x+1\right)} por \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Dado que \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} e \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Fai as multiplicacións en \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Combina como termos en 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Expande \left(x-4\right)\left(x+4\right)\left(5x+1\right).
\frac{x+2}{\left(x-4\right)\left(x+4\right)}+\frac{4}{\left(x-4\right)\left(5x+1\right)}
Factoriza x^{2}-16. Factoriza 5x^{2}-19x-4.
\frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}+\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-4\right)\left(x+4\right) e \left(x-4\right)\left(5x+1\right) é \left(x-4\right)\left(x+4\right)\left(5x+1\right). Multiplica \frac{x+2}{\left(x-4\right)\left(x+4\right)} por \frac{5x+1}{5x+1}. Multiplica \frac{4}{\left(x-4\right)\left(5x+1\right)} por \frac{x+4}{x+4}.
\frac{\left(x+2\right)\left(5x+1\right)+4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Dado que \frac{\left(x+2\right)\left(5x+1\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} e \frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{5x^{2}+x+10x+2+4x+16}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Fai as multiplicacións en \left(x+2\right)\left(5x+1\right)+4\left(x+4\right).
\frac{5x^{2}+15x+18}{\left(x-4\right)\left(x+4\right)\left(5x+1\right)}
Combina como termos en 5x^{2}+x+10x+2+4x+16.
\frac{5x^{2}+15x+18}{5x^{3}+x^{2}-80x-16}
Expande \left(x-4\right)\left(x+4\right)\left(5x+1\right).