Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Factoriza x^{2}+4x-5. Factoriza x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-1\right)\left(x+5\right) e \left(x+1\right)\left(x+5\right) é \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiplica \frac{x+2}{\left(x-1\right)\left(x+5\right)} por \frac{x+1}{x+1}. Multiplica \frac{3}{\left(x+1\right)\left(x+5\right)} por \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Dado que \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} e \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Fai as multiplicacións en \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combina como termos en x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Expande \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
Factoriza x^{2}+4x-5. Factoriza x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(x-1\right)\left(x+5\right) e \left(x+1\right)\left(x+5\right) é \left(x-1\right)\left(x+1\right)\left(x+5\right). Multiplica \frac{x+2}{\left(x-1\right)\left(x+5\right)} por \frac{x+1}{x+1}. Multiplica \frac{3}{\left(x+1\right)\left(x+5\right)} por \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Dado que \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} e \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Fai as multiplicacións en \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
Combina como termos en x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
Expande \left(x-1\right)\left(x+1\right)\left(x+5\right).