Calcular
5
Parte real
5
Compartir
Copiado a portapapeis
\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}}
Para dividir potencias da mesma base, resta o expoñente do numerador ao expoñente do denominador.
\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}}
Reescribe a raíz cadrada da división \sqrt{\frac{1}{5}} como a división de raíces cadradas \frac{\sqrt{1}}{\sqrt{5}}.
\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}}
Calcular a raíz cadrada de 1 e obter 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}}
Racionaliza o denominador de \frac{1}{\sqrt{5}} mediante a multiplicación do numerador e o denominador por \sqrt{5}.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}}
O cadrado de \sqrt{5} é 5.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1}
Calcula i á potencia de 0 e obtén 1.
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}
Expresa \frac{\sqrt{5}}{5}\times 1 como unha única fracción.
\frac{\sqrt{5}\times 5}{\sqrt{5}}
Divide \sqrt{5} entre \frac{\sqrt{5}}{5} mediante a multiplicación de \sqrt{5} polo recíproco de \frac{\sqrt{5}}{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Racionaliza o denominador de \frac{\sqrt{5}\times 5}{\sqrt{5}} mediante a multiplicación do numerador e o denominador por \sqrt{5}.
\frac{\sqrt{5}\times 5\sqrt{5}}{5}
O cadrado de \sqrt{5} é 5.
\frac{5\times 5}{5}
Multiplica \sqrt{5} e \sqrt{5} para obter 5.
\frac{25}{5}
Multiplica 5 e 5 para obter 25.
5
Divide 25 entre 5 para obter 5.
Re(\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}})
Para dividir potencias da mesma base, resta o expoñente do numerador ao expoñente do denominador.
Re(\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}})
Reescribe a raíz cadrada da división \sqrt{\frac{1}{5}} como a división de raíces cadradas \frac{\sqrt{1}}{\sqrt{5}}.
Re(\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}})
Calcular a raíz cadrada de 1 e obter 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}})
Racionaliza o denominador de \frac{1}{\sqrt{5}} mediante a multiplicación do numerador e o denominador por \sqrt{5}.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}})
O cadrado de \sqrt{5} é 5.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1})
Calcula i á potencia de 0 e obtén 1.
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}})
Expresa \frac{\sqrt{5}}{5}\times 1 como unha única fracción.
Re(\frac{\sqrt{5}\times 5}{\sqrt{5}})
Divide \sqrt{5} entre \frac{\sqrt{5}}{5} mediante a multiplicación de \sqrt{5} polo recíproco de \frac{\sqrt{5}}{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
Racionaliza o denominador de \frac{\sqrt{5}\times 5}{\sqrt{5}} mediante a multiplicación do numerador e o denominador por \sqrt{5}.
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{5})
O cadrado de \sqrt{5} é 5.
Re(\frac{5\times 5}{5})
Multiplica \sqrt{5} e \sqrt{5} para obter 5.
Re(\frac{25}{5})
Multiplica 5 e 5 para obter 25.
Re(5)
Divide 25 entre 5 para obter 5.
5
A parte real de 5 é 5.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}