Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Factoriza 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(12-c\right)^{2} e c\left(-c+12\right) é c\left(-c+12\right)\left(-c+12\right)^{2}. Multiplica \frac{c+12}{\left(12-c\right)^{2}} por \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiplica \frac{12}{c\left(-c+12\right)} por \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Dado que \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} e \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Fai as multiplicacións en \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Combina como termos en -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Factoriza as expresións que aínda non o están en \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Anula -c+12 no numerador e no denominador.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Expande c\left(-c+12\right)^{2}.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Factoriza 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(12-c\right)^{2} e c\left(-c+12\right) é c\left(-c+12\right)\left(-c+12\right)^{2}. Multiplica \frac{c+12}{\left(12-c\right)^{2}} por \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiplica \frac{12}{c\left(-c+12\right)} por \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Dado que \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} e \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Fai as multiplicacións en \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Combina como termos en -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Factoriza as expresións que aínda non o están en \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Anula -c+12 no numerador e no denominador.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Expande c\left(-c+12\right)^{2}.