Calcular
\frac{18750000Nm}{22148281\pi }
Diferenciar w.r.t. N
\frac{18750000m}{22148281\pi }
Compartir
Copiado a portapapeis
\frac{5\times 10^{-12}c\times 9c}{4\pi \times 1.0006\times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma -6 e -6 para obter -12.
\frac{5\times 10^{-12}c^{2}\times 9}{4\pi \times 1.0006\times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica c e c para obter c^{2}.
\frac{5\times \frac{1}{1000000000000}c^{2}\times 9}{4\pi \times 1.0006\times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Calcula 10 á potencia de -12 e obtén \frac{1}{1000000000000}.
\frac{\frac{1}{200000000000}c^{2}\times 9}{4\pi \times 1.0006\times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica 5 e \frac{1}{1000000000000} para obter \frac{1}{200000000000}.
\frac{\frac{9}{200000000000}c^{2}}{4\pi \times 1.0006\times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica \frac{1}{200000000000} e 9 para obter \frac{9}{200000000000}.
\frac{\frac{9}{200000000000}c^{2}}{4.0024\pi \times 8.854\times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica 4 e 1.0006 para obter 4.0024.
\frac{\frac{9}{200000000000}c^{2}}{35.4372496\pi \times 10^{-12}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica 4.0024 e 8.854 para obter 35.4372496.
\frac{\frac{9}{200000000000}c^{2}}{35.4372496\pi \times \frac{1}{1000000000000}\times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Calcula 10 á potencia de -12 e obtén \frac{1}{1000000000000}.
\frac{\frac{9}{200000000000}c^{2}}{\frac{22148281}{625000000000000000}\pi \times \frac{c^{2}}{Nm^{2}}\times 1.5m}
Multiplica 35.4372496 e \frac{1}{1000000000000} para obter \frac{22148281}{625000000000000000}.
\frac{\frac{9}{200000000000}c^{2}}{\frac{66444843}{1250000000000000000}\pi \times \frac{c^{2}}{Nm^{2}}m}
Multiplica \frac{22148281}{625000000000000000} e 1.5 para obter \frac{66444843}{1250000000000000000}.
\frac{\frac{9}{200000000000}c^{2}}{\frac{66444843c^{2}}{1250000000000000000Nm^{2}}\pi m}
Multiplica \frac{66444843}{1250000000000000000} por \frac{c^{2}}{Nm^{2}} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\frac{9}{200000000000}c^{2}}{\frac{66444843c^{2}m}{1250000000000000000Nm^{2}}\pi }
Expresa \frac{66444843c^{2}}{1250000000000000000Nm^{2}}m como unha única fracción.
\frac{\frac{9}{200000000000}c^{2}}{\frac{66444843c^{2}}{1250000000000000000Nm}\pi }
Anula m no numerador e no denominador.
\frac{\frac{9}{200000000000}c^{2}}{\frac{66444843c^{2}\pi }{1250000000000000000Nm}}
Expresa \frac{66444843c^{2}}{1250000000000000000Nm}\pi como unha única fracción.
\frac{\frac{9}{200000000000}c^{2}\times 1250000000000000000Nm}{66444843c^{2}\pi }
Divide \frac{9}{200000000000}c^{2} entre \frac{66444843c^{2}\pi }{1250000000000000000Nm} mediante a multiplicación de \frac{9}{200000000000}c^{2} polo recíproco de \frac{66444843c^{2}\pi }{1250000000000000000Nm}.
\frac{\frac{9}{200000000000}\times 1250000000000000000Nm}{66444843\pi }
Anula c^{2} no numerador e no denominador.
\frac{56250000Nm}{66444843\pi }
Multiplica \frac{9}{200000000000} e 1250000000000000000 para obter 56250000.
\frac{18750000Nm}{22148281\pi }
Anula 3 no numerador e no denominador.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}