Calcular
7\sqrt{3}+13\approx 25.124355653
Compartir
Copiado a portapapeis
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Racionaliza o denominador de \frac{5+\sqrt{3}}{2-\sqrt{3}} mediante a multiplicación do numerador e o denominador por 2+\sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Considera \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
Eleva 2 ao cadrado. Eleva \sqrt{3} ao cadrado.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
Resta 3 de 4 para obter 1.
\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)
Calquera cifra entre un é igual á cifra.
10+5\sqrt{3}+2\sqrt{3}+\left(\sqrt{3}\right)^{2}
Aplicar a propiedade distributiva multiplicando cada termo de 5+\sqrt{3} por cada termo de 2+\sqrt{3}.
10+7\sqrt{3}+\left(\sqrt{3}\right)^{2}
Combina 5\sqrt{3} e 2\sqrt{3} para obter 7\sqrt{3}.
10+7\sqrt{3}+3
O cadrado de \sqrt{3} é 3.
13+7\sqrt{3}
Suma 10 e 3 para obter 13.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}