Calcular
\frac{2x^{3}}{25}+\frac{6x^{2}}{5}+\frac{4x}{15}
Factorizar
\frac{6x\left(x-\left(-\frac{\sqrt{1905}}{6}-\frac{15}{2}\right)\right)\left(x-\left(\frac{\sqrt{1905}}{6}-\frac{15}{2}\right)\right)}{75}
Gráfico
Compartir
Copiado a portapapeis
\frac{2x^{3}}{25}+\frac{5\times 6x^{2}}{25}+\frac{4x}{15}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de 25 e 5 é 25. Multiplica \frac{6x^{2}}{5} por \frac{5}{5}.
\frac{2x^{3}+5\times 6x^{2}}{25}+\frac{4x}{15}
Dado que \frac{2x^{3}}{25} e \frac{5\times 6x^{2}}{25} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{2x^{3}+30x^{2}}{25}+\frac{4x}{15}
Fai as multiplicacións en 2x^{3}+5\times 6x^{2}.
\frac{3\left(2x^{3}+30x^{2}\right)}{75}+\frac{5\times 4x}{75}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de 25 e 15 é 75. Multiplica \frac{2x^{3}+30x^{2}}{25} por \frac{3}{3}. Multiplica \frac{4x}{15} por \frac{5}{5}.
\frac{3\left(2x^{3}+30x^{2}\right)+5\times 4x}{75}
Dado que \frac{3\left(2x^{3}+30x^{2}\right)}{75} e \frac{5\times 4x}{75} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{6x^{3}+90x^{2}+20x}{75}
Fai as multiplicacións en 3\left(2x^{3}+30x^{2}\right)+5\times 4x.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}