Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suma 2 e 6 para obter 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suma 2 e 6 para obter 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica -a-1 por \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Dado que \frac{2a+10}{a+1} e \frac{\left(-a-1\right)\left(a+1\right)}{a+1} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Fai as multiplicacións en 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Combina como termos en 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Divide \frac{8-5a}{8+7a} entre \frac{9-a^{2}}{a+1} mediante a multiplicación de \frac{8-5a}{8+7a} polo recíproco de \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Factoriza \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(a-3\right)\left(-a-3\right)\left(7a+8\right) e a+3 é \left(a-3\right)\left(a+3\right)\left(7a+8\right). Multiplica \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} por \frac{-1}{-1}. Multiplica \frac{1}{a+3} por \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Dado que \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} e \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Fai as multiplicacións en -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Combina como termos en -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Expande \left(a-3\right)\left(a+3\right)\left(7a+8\right).
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suma 2 e 6 para obter 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suma 2 e 6 para obter 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica -a-1 por \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Dado que \frac{2a+10}{a+1} e \frac{\left(-a-1\right)\left(a+1\right)}{a+1} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Fai as multiplicacións en 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Combina como termos en 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Divide \frac{8-5a}{8+7a} entre \frac{9-a^{2}}{a+1} mediante a multiplicación de \frac{8-5a}{8+7a} polo recíproco de \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Factoriza \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(a-3\right)\left(-a-3\right)\left(7a+8\right) e a+3 é \left(a-3\right)\left(a+3\right)\left(7a+8\right). Multiplica \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} por \frac{-1}{-1}. Multiplica \frac{1}{a+3} por \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Dado que \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} e \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Fai as multiplicacións en -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Combina como termos en -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Expande \left(a-3\right)\left(a+3\right)\left(7a+8\right).