Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
Racionaliza o denominador de \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} mediante a multiplicación do numerador e o denominador por 2\sqrt{3}-\sqrt{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Considera \left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Multiplica 2\sqrt{3}-\sqrt{2} e 2\sqrt{3}-\sqrt{2} para obter \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Usar teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
O cadrado de \sqrt{3} é 3.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Multiplica 4 e 3 para obter 12.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Para multiplicar \sqrt{3} e \sqrt{2}, multiplica os números baixo a raíz cadrada.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
O cadrado de \sqrt{2} é 2.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Suma 12 e 2 para obter 14.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Expande \left(2\sqrt{3}\right)^{2}.
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Calcula 2 á potencia de 2 e obtén 4.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
O cadrado de \sqrt{3} é 3.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
Multiplica 4 e 3 para obter 12.
\frac{14-4\sqrt{6}}{12-2}
O cadrado de \sqrt{2} é 2.
\frac{14-4\sqrt{6}}{10}
Resta 2 de 12 para obter 10.