\frac { 2 \cdot 6,67 \cdot 10 ^ { - 11 } \cdot 3 k m } { 300000 k m / h }
Calcular
\frac{667h}{500000000000000000}
Diferenciar w.r.t. h
0,000000000000001334
Quiz
5 problemas similares a:
\frac { 2 \cdot 6,67 \cdot 10 ^ { - 11 } \cdot 3 k m } { 300000 k m / h }
Compartir
Copiado a portapapeis
\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}}
Multiplica 2 e 6,67 para obter 13,34.
\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}}
Multiplica 13,34 e \frac{1}{100000000000} para obter \frac{667}{5000000000000}.
\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}}
Multiplica \frac{667}{5000000000000} e 3 para obter \frac{2001}{5000000000000}.
\frac{\frac{2001}{5000000000000}kmh}{300000km}
Divide \frac{2001}{5000000000000}km entre \frac{300000km}{h} mediante a multiplicación de \frac{2001}{5000000000000}km polo recíproco de \frac{300000km}{h}.
\frac{\frac{2001}{5000000000000}h}{300000}
Anula km no numerador e no denominador.
\frac{667}{500000000000000000}h
Divide \frac{2001}{5000000000000}h entre 300000 para obter \frac{667}{500000000000000000}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}})
Multiplica 2 e 6,67 para obter 13,34.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}})
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}})
Multiplica 13,34 e \frac{1}{100000000000} para obter \frac{667}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}})
Multiplica \frac{667}{5000000000000} e 3 para obter \frac{2001}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}kmh}{300000km})
Divide \frac{2001}{5000000000000}km entre \frac{300000km}{h} mediante a multiplicación de \frac{2001}{5000000000000}km polo recíproco de \frac{300000km}{h}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}h}{300000})
Anula km no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{667}{500000000000000000}h)
Divide \frac{2001}{5000000000000}h entre 300000 para obter \frac{667}{500000000000000000}h.
\frac{667}{500000000000000000}h^{1-1}
A derivada de ax^{n} é nax^{n-1}.
\frac{667}{500000000000000000}h^{0}
Resta 1 de 1.
\frac{667}{500000000000000000}\times 1
Para calquera termo t agás 0, t^{0}=1.
\frac{667}{500000000000000000}
Para calquera termo t, t\times 1=t e 1t=t.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}