Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. h
Tick mark Image

Problemas similares da busca web

Compartir

\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}}
Multiplica 2 e 6,67 para obter 13,34.
\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}}
Multiplica 13,34 e \frac{1}{100000000000} para obter \frac{667}{5000000000000}.
\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}}
Multiplica \frac{667}{5000000000000} e 3 para obter \frac{2001}{5000000000000}.
\frac{\frac{2001}{5000000000000}kmh}{300000km}
Divide \frac{2001}{5000000000000}km entre \frac{300000km}{h} mediante a multiplicación de \frac{2001}{5000000000000}km polo recíproco de \frac{300000km}{h}.
\frac{\frac{2001}{5000000000000}h}{300000}
Anula km no numerador e no denominador.
\frac{667}{500000000000000000}h
Divide \frac{2001}{5000000000000}h entre 300000 para obter \frac{667}{500000000000000000}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times 10^{-11}\times 3km}{\frac{300000km}{h}})
Multiplica 2 e 6,67 para obter 13,34.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{13,34\times \frac{1}{100000000000}\times 3km}{\frac{300000km}{h}})
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{667}{5000000000000}\times 3km}{\frac{300000km}{h}})
Multiplica 13,34 e \frac{1}{100000000000} para obter \frac{667}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}km}{\frac{300000km}{h}})
Multiplica \frac{667}{5000000000000} e 3 para obter \frac{2001}{5000000000000}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}kmh}{300000km})
Divide \frac{2001}{5000000000000}km entre \frac{300000km}{h} mediante a multiplicación de \frac{2001}{5000000000000}km polo recíproco de \frac{300000km}{h}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{2001}{5000000000000}h}{300000})
Anula km no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{667}{500000000000000000}h)
Divide \frac{2001}{5000000000000}h entre 300000 para obter \frac{667}{500000000000000000}h.
\frac{667}{500000000000000000}h^{1-1}
A derivada de ax^{n} é nax^{n-1}.
\frac{667}{500000000000000000}h^{0}
Resta 1 de 1.
\frac{667}{500000000000000000}\times 1
Para calquera termo t agás 0, t^{0}=1.
\frac{667}{500000000000000000}
Para calquera termo t, t\times 1=t e 1t=t.