Resolver x
x=-1
x=2
Gráfico
Compartir
Copiado a portapapeis
2+xx=x+4
A variable x non pode ser igual a 0 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por 2x, o mínimo común denominador de x,2,2x.
2+x^{2}=x+4
Multiplica x e x para obter x^{2}.
2+x^{2}-x=4
Resta x en ambos lados.
2+x^{2}-x-4=0
Resta 4 en ambos lados.
-2+x^{2}-x=0
Resta 4 de 2 para obter -2.
x^{2}-x-2=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por -1 e c por -2 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Multiplica -4 por -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
Suma 1 a 8.
x=\frac{-\left(-1\right)±3}{2}
Obtén a raíz cadrada de 9.
x=\frac{1±3}{2}
O contrario de -1 é 1.
x=\frac{4}{2}
Agora resolve a ecuación x=\frac{1±3}{2} se ± é máis. Suma 1 a 3.
x=2
Divide 4 entre 2.
x=-\frac{2}{2}
Agora resolve a ecuación x=\frac{1±3}{2} se ± é menos. Resta 3 de 1.
x=-1
Divide -2 entre 2.
x=2 x=-1
A ecuación está resolta.
2+xx=x+4
A variable x non pode ser igual a 0 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por 2x, o mínimo común denominador de x,2,2x.
2+x^{2}=x+4
Multiplica x e x para obter x^{2}.
2+x^{2}-x=4
Resta x en ambos lados.
x^{2}-x=4-2
Resta 2 en ambos lados.
x^{2}-x=2
Resta 2 de 4 para obter 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Divide -1, o coeficiente do termo x, entre 2 para obter -\frac{1}{2}. Despois, suma o cadrado de -\frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Eleva -\frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Suma 2 a \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Factoriza x^{2}-x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Simplifica.
x=2 x=-1
Suma \frac{1}{2} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}