Calcular
-\frac{1}{3}\approx -0.333333333
Factorizar
-\frac{1}{3} = -0.3333333333333333
Compartir
Copiado a portapapeis
\frac{-\frac{4}{4}+\frac{3}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Converter -1 á fracción -\frac{4}{4}.
\frac{\frac{-4+3}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Dado que -\frac{4}{4} e \frac{3}{4} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{-\frac{1}{4}-\frac{1}{3}}{2-\frac{1}{4}}
Suma -4 e 3 para obter -1.
\frac{-\frac{3}{12}-\frac{4}{12}}{2-\frac{1}{4}}
O mínimo común múltiplo de 4 e 3 é 12. Converte -\frac{1}{4} e \frac{1}{3} a fraccións co denominador 12.
\frac{\frac{-3-4}{12}}{2-\frac{1}{4}}
Dado que -\frac{3}{12} e \frac{4}{12} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{-\frac{7}{12}}{2-\frac{1}{4}}
Resta 4 de -3 para obter -7.
\frac{-\frac{7}{12}}{\frac{8}{4}-\frac{1}{4}}
Converter 2 á fracción \frac{8}{4}.
\frac{-\frac{7}{12}}{\frac{8-1}{4}}
Dado que \frac{8}{4} e \frac{1}{4} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{-\frac{7}{12}}{\frac{7}{4}}
Resta 1 de 8 para obter 7.
-\frac{7}{12}\times \frac{4}{7}
Divide -\frac{7}{12} entre \frac{7}{4} mediante a multiplicación de -\frac{7}{12} polo recíproco de \frac{7}{4}.
\frac{-7\times 4}{12\times 7}
Multiplica -\frac{7}{12} por \frac{4}{7} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{-28}{84}
Fai as multiplicacións na fracción \frac{-7\times 4}{12\times 7}.
-\frac{1}{3}
Reduce a fracción \frac{-28}{84} a termos máis baixos extraendo e cancelando 28.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}