Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(-\left(9\times 2\right)^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcula 3 á potencia de 2 e obtén 9.
\frac{\left(-18^{-4}\right)\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplica 9 e 2 para obter 18.
\frac{-\frac{1}{104976}\times 3^{4}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcula 18 á potencia de -4 e obtén \frac{1}{104976}.
\frac{-\frac{1}{104976}\times 81}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcula 3 á potencia de 4 e obtén 81.
\frac{-\frac{1}{1296}}{\left(2\times 3\right)^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplica -\frac{1}{104976} e 81 para obter -\frac{1}{1296}.
\frac{-\frac{1}{1296}}{6^{3}\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplica 2 e 3 para obter 6.
\frac{-\frac{1}{1296}}{216\times 2^{2}\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcula 6 á potencia de 3 e obtén 216.
\frac{-\frac{1}{1296}}{216\times 4\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Calcula 2 á potencia de 2 e obtén 4.
\frac{-\frac{1}{1296}}{864\times 3^{3}-\left(2^{3}-3\right)^{-4}}
Multiplica 216 e 4 para obter 864.
\frac{-\frac{1}{1296}}{864\times 27-\left(2^{3}-3\right)^{-4}}
Calcula 3 á potencia de 3 e obtén 27.
\frac{-\frac{1}{1296}}{23328-\left(2^{3}-3\right)^{-4}}
Multiplica 864 e 27 para obter 23328.
\frac{-\frac{1}{1296}}{23328-\left(8-3\right)^{-4}}
Calcula 2 á potencia de 3 e obtén 8.
\frac{-\frac{1}{1296}}{23328-5^{-4}}
Resta 3 de 8 para obter 5.
\frac{-\frac{1}{1296}}{23328-\frac{1}{625}}
Calcula 5 á potencia de -4 e obtén \frac{1}{625}.
\frac{-\frac{1}{1296}}{\frac{14579999}{625}}
Resta \frac{1}{625} de 23328 para obter \frac{14579999}{625}.
-\frac{1}{1296}\times \frac{625}{14579999}
Divide -\frac{1}{1296} entre \frac{14579999}{625} mediante a multiplicación de -\frac{1}{1296} polo recíproco de \frac{14579999}{625}.
-\frac{625}{18895678704}
Multiplica -\frac{1}{1296} e \frac{625}{14579999} para obter -\frac{625}{18895678704}.