Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(3a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Divide \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} entre \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}} mediante a multiplicación de \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} polo recíproco de \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}}.
\frac{3^{2}\left(a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(3a^{5}\right)^{2}.
\frac{3^{2}a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 5 e 2 para obter 10.
\frac{9a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Calcula 3 á potencia de 2 e obtén 9.
\frac{9a^{10}\times 8^{3}\left(b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(8b^{5}\right)^{3}.
\frac{9a^{10}\times 8^{3}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 5 e 3 para obter 15.
\frac{9a^{10}\times 512b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Calcula 8 á potencia de 3 e obtén 512.
\frac{4608a^{10}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Multiplica 9 e 512 para obter 4608.
\frac{4608a^{10}b^{15}}{2^{3}\left(b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(2b^{4}\right)^{3}.
\frac{4608a^{10}b^{15}}{2^{3}b^{12}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 4 e 3 para obter 12.
\frac{4608a^{10}b^{15}}{8b^{12}\times \left(9a^{3}\right)^{2}}
Calcula 2 á potencia de 3 e obtén 8.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}\left(a^{3}\right)^{2}}
Expande \left(9a^{3}\right)^{2}.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}a^{6}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 3 e 2 para obter 6.
\frac{4608a^{10}b^{15}}{8b^{12}\times 81a^{6}}
Calcula 9 á potencia de 2 e obtén 81.
\frac{4608a^{10}b^{15}}{648b^{12}a^{6}}
Multiplica 8 e 81 para obter 648.
\frac{64b^{3}a^{4}}{9}
Anula 72a^{6}b^{12} no numerador e no denominador.
\frac{\left(3a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Divide \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} entre \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}} mediante a multiplicación de \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} polo recíproco de \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}}.
\frac{3^{2}\left(a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(3a^{5}\right)^{2}.
\frac{3^{2}a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 5 e 2 para obter 10.
\frac{9a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Calcula 3 á potencia de 2 e obtén 9.
\frac{9a^{10}\times 8^{3}\left(b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(8b^{5}\right)^{3}.
\frac{9a^{10}\times 8^{3}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 5 e 3 para obter 15.
\frac{9a^{10}\times 512b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Calcula 8 á potencia de 3 e obtén 512.
\frac{4608a^{10}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Multiplica 9 e 512 para obter 4608.
\frac{4608a^{10}b^{15}}{2^{3}\left(b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Expande \left(2b^{4}\right)^{3}.
\frac{4608a^{10}b^{15}}{2^{3}b^{12}\times \left(9a^{3}\right)^{2}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 4 e 3 para obter 12.
\frac{4608a^{10}b^{15}}{8b^{12}\times \left(9a^{3}\right)^{2}}
Calcula 2 á potencia de 3 e obtén 8.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}\left(a^{3}\right)^{2}}
Expande \left(9a^{3}\right)^{2}.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}a^{6}}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 3 e 2 para obter 6.
\frac{4608a^{10}b^{15}}{8b^{12}\times 81a^{6}}
Calcula 9 á potencia de 2 e obtén 81.
\frac{4608a^{10}b^{15}}{648b^{12}a^{6}}
Multiplica 8 e 81 para obter 648.
\frac{64b^{3}a^{4}}{9}
Anula 72a^{6}b^{12} no numerador e no denominador.