Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Compartir

\frac{\left(2-\frac{1}{5}\right)^{2}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Divide 4 entre 4 para obter 1.
\frac{\left(\frac{9}{5}\right)^{2}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Resta \frac{1}{5} de 2 para obter \frac{9}{5}.
\frac{\frac{81}{25}}{\left(3-1\right)^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calcula \frac{9}{5} á potencia de 2 e obtén \frac{81}{25}.
\frac{\frac{81}{25}}{2^{-1}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Resta 1 de 3 para obter 2.
\frac{\frac{81}{25}}{\frac{1}{2}}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calcula 2 á potencia de -1 e obtén \frac{1}{2}.
\frac{81}{25}\times 2+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Divide \frac{81}{25} entre \frac{1}{2} mediante a multiplicación de \frac{81}{25} polo recíproco de \frac{1}{2}.
\frac{162}{25}+\frac{\left(\frac{6}{7}\times \frac{5}{4}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Multiplica \frac{81}{25} e 2 para obter \frac{162}{25}.
\frac{162}{25}+\frac{\left(\frac{15}{14}-\frac{1}{7}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Multiplica \frac{6}{7} e \frac{5}{4} para obter \frac{15}{14}.
\frac{162}{25}+\frac{\left(\frac{13}{14}+\frac{1}{2}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Resta \frac{1}{7} de \frac{15}{14} para obter \frac{13}{14}.
\frac{162}{25}+\frac{\left(\frac{10}{7}\right)^{3}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Suma \frac{13}{14} e \frac{1}{2} para obter \frac{10}{7}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{\frac{1}{3}\times \frac{1}{4}}{5}}-\frac{4\times 6+4}{6}
Calcula \frac{10}{7} á potencia de 3 e obtén \frac{1000}{343}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{\frac{1}{12}}{5}}-\frac{4\times 6+4}{6}
Multiplica \frac{1}{3} e \frac{1}{4} para obter \frac{1}{12}.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{1}{12\times 5}}-\frac{4\times 6+4}{6}
Expresa \frac{\frac{1}{12}}{5} como unha única fracción.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{1}{2}-\frac{1}{60}}-\frac{4\times 6+4}{6}
Multiplica 12 e 5 para obter 60.
\frac{162}{25}+\frac{\frac{1000}{343}}{\frac{29}{60}}-\frac{4\times 6+4}{6}
Resta \frac{1}{60} de \frac{1}{2} para obter \frac{29}{60}.
\frac{162}{25}+\frac{1000}{343}\times \frac{60}{29}-\frac{4\times 6+4}{6}
Divide \frac{1000}{343} entre \frac{29}{60} mediante a multiplicación de \frac{1000}{343} polo recíproco de \frac{29}{60}.
\frac{162}{25}+\frac{60000}{9947}-\frac{4\times 6+4}{6}
Multiplica \frac{1000}{343} e \frac{60}{29} para obter \frac{60000}{9947}.
\frac{3111414}{248675}-\frac{4\times 6+4}{6}
Suma \frac{162}{25} e \frac{60000}{9947} para obter \frac{3111414}{248675}.
\frac{3111414}{248675}-\frac{24+4}{6}
Multiplica 4 e 6 para obter 24.
\frac{3111414}{248675}-\frac{28}{6}
Suma 24 e 4 para obter 28.
\frac{3111414}{248675}-\frac{14}{3}
Reduce a fracción \frac{28}{6} a termos máis baixos extraendo e cancelando 2.
\frac{5852792}{746025}
Resta \frac{14}{3} de \frac{3111414}{248675} para obter \frac{5852792}{746025}.