Calcular
\frac{311}{60}\approx 5.183333333
Factorizar
\frac{311}{2 ^ {2} \cdot 3 \cdot 5} = 5\frac{11}{60} = 5.183333333333334
Compartir
Copiado a portapapeis
\frac{\left(\frac{9}{12}-\frac{4}{12}\right)\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
O mínimo común múltiplo de 4 e 3 é 12. Converte \frac{3}{4} e \frac{1}{3} a fraccións co denominador 12.
\frac{\frac{9-4}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Dado que \frac{9}{12} e \frac{4}{12} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{5}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Resta 4 de 9 para obter 5.
\frac{\frac{5\times 2}{12\times 3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Multiplica \frac{5}{12} por \frac{2}{3} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\frac{10}{36}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Fai as multiplicacións na fracción \frac{5\times 2}{12\times 3}.
\frac{\frac{5}{18}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Reduce a fracción \frac{10}{36} a termos máis baixos extraendo e cancelando 2.
\frac{\frac{5}{18}}{\frac{\frac{6}{6}-\frac{1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Converter 1 á fracción \frac{6}{6}.
\frac{\frac{5}{18}}{\frac{\frac{6-1}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Dado que \frac{6}{6} e \frac{1}{6} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{5}{18}}{\frac{\frac{5}{6}}{5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Resta 1 de 6 para obter 5.
\frac{\frac{5}{18}}{\frac{5}{6\times 5}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Expresa \frac{\frac{5}{6}}{5} como unha única fracción.
\frac{\frac{5}{18}}{\frac{1}{6}}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Anula 5 no numerador e no denominador.
\frac{5}{18}\times 6\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Divide \frac{5}{18} entre \frac{1}{6} mediante a multiplicación de \frac{5}{18} polo recíproco de \frac{1}{6}.
\frac{5\times 6}{18}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Expresa \frac{5}{18}\times 6 como unha única fracción.
\frac{30}{18}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Multiplica 5 e 6 para obter 30.
\frac{5}{3}\times 3+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Reduce a fracción \frac{30}{18} a termos máis baixos extraendo e cancelando 6.
5+\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Anula 3 e 3.
5+\frac{\frac{8}{6}+\frac{3}{6}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
O mínimo común múltiplo de 3 e 2 é 6. Converte \frac{4}{3} e \frac{1}{2} a fraccións co denominador 6.
5+\frac{\frac{8+3}{6}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Dado que \frac{8}{6} e \frac{3}{6} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
5+\frac{\frac{11}{6}}{\frac{1}{\frac{1}{2}-\frac{2}{5}}}
Suma 8 e 3 para obter 11.
5+\frac{\frac{11}{6}}{\frac{1}{\frac{5}{10}-\frac{4}{10}}}
O mínimo común múltiplo de 2 e 5 é 10. Converte \frac{1}{2} e \frac{2}{5} a fraccións co denominador 10.
5+\frac{\frac{11}{6}}{\frac{1}{\frac{5-4}{10}}}
Dado que \frac{5}{10} e \frac{4}{10} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
5+\frac{\frac{11}{6}}{\frac{1}{\frac{1}{10}}}
Resta 4 de 5 para obter 1.
5+\frac{\frac{11}{6}}{1\times 10}
Divide 1 entre \frac{1}{10} mediante a multiplicación de 1 polo recíproco de \frac{1}{10}.
5+\frac{\frac{11}{6}}{10}
Multiplica 1 e 10 para obter 10.
5+\frac{11}{6\times 10}
Expresa \frac{\frac{11}{6}}{10} como unha única fracción.
5+\frac{11}{60}
Multiplica 6 e 10 para obter 60.
\frac{300}{60}+\frac{11}{60}
Converter 5 á fracción \frac{300}{60}.
\frac{300+11}{60}
Dado que \frac{300}{60} e \frac{11}{60} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{311}{60}
Suma 300 e 11 para obter 311.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}