Calcular
\frac{12\sqrt{6}}{7}\approx 4.199125273
Compartir
Copiado a portapapeis
\frac{72}{\sqrt{49}\sqrt{6}}
O cadrado de \sqrt{72} é 72.
\frac{72}{7\sqrt{6}}
Calcular a raíz cadrada de 49 e obter 7.
\frac{72\sqrt{6}}{7\left(\sqrt{6}\right)^{2}}
Racionaliza o denominador de \frac{72}{7\sqrt{6}} mediante a multiplicación do numerador e o denominador por \sqrt{6}.
\frac{72\sqrt{6}}{7\times 6}
O cadrado de \sqrt{6} é 6.
\frac{12\sqrt{6}}{7}
Anula 6 no numerador e no denominador.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}