Calcular
\frac{249251}{10}=24925.1
Factorizar
\frac{23 \cdot 10837}{2 \cdot 5} = 24925\frac{1}{10} = 24925.1
Compartir
Copiado a portapapeis
\frac{\frac{1}{5}+\frac{999\times 499}{495}\times 99}{4}
Expresa 999\times \frac{499}{495} como unha única fracción.
\frac{\frac{1}{5}+\frac{498501}{495}\times 99}{4}
Multiplica 999 e 499 para obter 498501.
\frac{\frac{1}{5}+\frac{55389}{55}\times 99}{4}
Reduce a fracción \frac{498501}{495} a termos máis baixos extraendo e cancelando 9.
\frac{\frac{1}{5}+\frac{55389\times 99}{55}}{4}
Expresa \frac{55389}{55}\times 99 como unha única fracción.
\frac{\frac{1}{5}+\frac{5483511}{55}}{4}
Multiplica 55389 e 99 para obter 5483511.
\frac{\frac{1}{5}+\frac{498501}{5}}{4}
Reduce a fracción \frac{5483511}{55} a termos máis baixos extraendo e cancelando 11.
\frac{\frac{1+498501}{5}}{4}
Dado que \frac{1}{5} e \frac{498501}{5} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{498502}{5}}{4}
Suma 1 e 498501 para obter 498502.
\frac{498502}{5\times 4}
Expresa \frac{\frac{498502}{5}}{4} como unha única fracción.
\frac{498502}{20}
Multiplica 5 e 4 para obter 20.
\frac{249251}{10}
Reduce a fracción \frac{498502}{20} a termos máis baixos extraendo e cancelando 2.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}