Calcular
-\frac{1725}{1034}\approx -1.66827853
Factorizar
-\frac{1725}{1034} = -1\frac{691}{1034} = -1.6682785299806577
Compartir
Copiado a portapapeis
\frac{\frac{1+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 2^{1} entre 2 para obter 1.
\frac{\frac{\frac{2}{2}+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Converter 1 á fracción \frac{2}{2}.
\frac{\frac{\frac{2+1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Dado que \frac{2}{2} e \frac{1}{2} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{\frac{3}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Suma 2 e 1 para obter 3.
\frac{\frac{3}{2\times 3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Expresa \frac{\frac{3}{2}}{3} como unha única fracción.
\frac{\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Anula 3 no numerador e no denominador.
\frac{\frac{1}{2}+\frac{\frac{3}{3}-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Converter 1 á fracción \frac{3}{3}.
\frac{\frac{1}{2}+\frac{\frac{3-1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Dado que \frac{3}{3} e \frac{1}{3} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{1}{2}+\frac{\frac{2}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Resta 1 de 3 para obter 2.
\frac{\frac{1}{2}+\frac{2}{3\times 2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Expresa \frac{\frac{2}{3}}{2} como unha única fracción.
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Anula 2 no numerador e no denominador.
\frac{\frac{3}{6}+\frac{2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
O mínimo común múltiplo de 2 e 3 é 6. Converte \frac{1}{2} e \frac{1}{3} a fraccións co denominador 6.
\frac{\frac{3+2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Dado que \frac{3}{6} e \frac{2}{6} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{5}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Suma 3 e 2 para obter 5.
\frac{\frac{5}{6}}{1\times \frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 1 entre \frac{5}{6} mediante a multiplicación de 1 polo recíproco de \frac{5}{6}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiplica 1 e \frac{6}{5} para obter \frac{6}{5}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{1}{3}\times 8}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{1}{3} entre \frac{1}{8} mediante a multiplicación de \frac{1}{3} polo recíproco de \frac{1}{8}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{8}{3}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiplica \frac{1}{3} e 8 para obter \frac{8}{3}.
\frac{\frac{5}{6}}{\frac{18}{15}-\frac{40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
O mínimo común múltiplo de 5 e 3 é 15. Converte \frac{6}{5} e \frac{8}{3} a fraccións co denominador 15.
\frac{\frac{5}{6}}{\frac{18-40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Dado que \frac{18}{15} e \frac{40}{15} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{5}{6}}{-\frac{22}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Resta 40 de 18 para obter -22.
\frac{5}{6}\left(-\frac{15}{22}\right)\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{5}{6} entre -\frac{22}{15} mediante a multiplicación de \frac{5}{6} polo recíproco de -\frac{22}{15}.
\frac{5\left(-15\right)}{6\times 22}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiplica \frac{5}{6} por -\frac{15}{22} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{-75}{132}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Fai as multiplicacións na fracción \frac{5\left(-15\right)}{6\times 22}.
-\frac{25}{44}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Reduce a fracción \frac{-75}{132} a termos máis baixos extraendo e cancelando 3.
-\frac{25}{44}\times \frac{23^{1}\times 12}{2\times 47}
Divide \frac{23^{1}}{2} entre \frac{47}{12} mediante a multiplicación de \frac{23^{1}}{2} polo recíproco de \frac{47}{12}.
-\frac{25}{44}\times \frac{6\times 23^{1}}{47}
Anula 2 no numerador e no denominador.
-\frac{25}{44}\times \frac{6\times 23}{47}
Calcula 23 á potencia de 1 e obtén 23.
-\frac{25}{44}\times \frac{138}{47}
Multiplica 6 e 23 para obter 138.
\frac{-25\times 138}{44\times 47}
Multiplica -\frac{25}{44} por \frac{138}{47} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{-3450}{2068}
Fai as multiplicacións na fracción \frac{-25\times 138}{44\times 47}.
-\frac{1725}{1034}
Reduce a fracción \frac{-3450}{2068} a termos máis baixos extraendo e cancelando 2.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}