Resolver S_A
S_{A}=-\frac{1250\ln(\frac{3337003025077953463961197002620872742310701551606317575539068357082237165057142656336369616926249056547912010455701225581989742461514197746357930675876097856683128695328962012252901771942642302523690139735092666862726927308898866461286316353303944133499975806298253255713365606859901830733744425449838820807344480496297200960271190651330043035679275835138113335790582187072005048085566168538750640560702282534262935004084944096491631658197650718471186238278624069416807539694125227010755491451314688596174593822189854788715072272852245640276456434160868693311725221396237587426895780870566676802377007061911294672653415379194482861529069659599509644270763499879381741345279469186302253488495811578706084172381679436160241664866493320555159707444359191710016994281026177268175775920885779337619491223599597927368609336314570384914656279121511775531920849473568262834166455191187024777511045567119893143002561517993084996086268892052158225212329945044323135382654587029197688791624516734112764726900873382039789796609342452561157841666933141878259601607171137228899568497336310537788768216333682061278482275526234991342374387677825817273569807977305001889011328436069948455421184024254599631535783824529439106152881695483116482639206661102739009952521809408634022651683227634362951183807386842971727218647754383375611071569417570298726882455309311961699769710776308784261345863342285156250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{1427329436145326146069865553879713451673689149639839845218651887116093223590801303950186778313908752428812636937812000392444340426350474492652750233852862438706448475981280897075278896537191516212533423303812089545683570182615649990807718960214716768201700537412528414876370541241782654682367605201333462877245115046496017838730574035783550948578014513378341460008596877921565677506587202583935504063015648486818446906623275016310987595099753520663279213256054253887522824051147407430708207729499411280315709555500290857019470135140772427907352850806169164222925440570176899964761803448202663273876077086389781086727741263012593700886558342010029681235799896766011253622482590222132741326635874882301309714218281735601729473899802052385219369934790853148076633970638671004467654196957909804469260015902491895206764452376445339133982137921102809703759334296116156295388067797776654771654998379674146221244798668140366009758343671452281521949347186392534457391880358227266513379790709639423847794916502490905605072915815111421268420249112837212647860011747574404052451639942430221688870528561979271191366353567293570007339362297257452051273776199762182833767950979108205069126961027502633910578987559342242585461045743934321360974564165183417446161971080334408936932889541285615807254745124558884568783791314710329724653709880976440425393991593299755006274484403003743978287086250420164396030842639087061919826815533289465481413284614006798816193383453947269100461874461922407520534484936343943435748347650911497543405772134924591364557211667665723345195417334874983906735952551881685473071861383002039360922764569881017672358194639760842173143305491257832049198883809723672653783683996973296343852254678250319461666265606563928628341873377075027787972981025167863028983139056170885007831038655583521760297709367122955535178319611425027841994673237423797775015860369697645097933724619308095184038982901771268906501227804194529735366633080364584641764762298055302812975076506430644791084548434493320483535485880713005537625704450786607371651436598799282836107315759891239818265879136301630283608191843514647882873666182826090740221939462557304471821833272438447166878907414751792417268925443083953946756373724763671409485679610380672131923848258222338649067300502646696909357939495382903085781021071425557173443477566602171522096111831161374597390717125137165889604398167333641307718327132531896730805830992839942121561554413493412781915694834489785939431900796742814802102204395310452090146276233667433896674390113293972509464794427572345381779963272710823688856967746964822123032870871140159159637136817458299754939740140357731385278683584740980045509517703154648818644422645525724916262865678096152482334114370757990346771246328777155802135195977518038522328848972426651519043178427818273859507880618097099868850435888386880736604390538560397246878934391747777310876588870901200087604263318822434085786641629021673743798124940667887797888913252266367104521670759158015608678195982587470514541663037008212703234787641621986501535525129634460516976351371172188457912855322294997797416234270622922284026134496142077755415704812227414471878418751622138040041362447538128296123018667513415801196978591491496330804760667964627882779669450993691906632241292055530218410772131162199460818684425469254851372230943916915889573889762092349588957495928461228182276516582356540890477800827235418882839694986437308741786194814822157063302758756239601412987})}{861\Delta }
\Delta \neq 0
Resolver Δ
\Delta =-\frac{1250\ln(\frac{3337003025077953463961197002620872742310701551606317575539068357082237165057142656336369616926249056547912010455701225581989742461514197746357930675876097856683128695328962012252901771942642302523690139735092666862726927308898866461286316353303944133499975806298253255713365606859901830733744425449838820807344480496297200960271190651330043035679275835138113335790582187072005048085566168538750640560702282534262935004084944096491631658197650718471186238278624069416807539694125227010755491451314688596174593822189854788715072272852245640276456434160868693311725221396237587426895780870566676802377007061911294672653415379194482861529069659599509644270763499879381741345279469186302253488495811578706084172381679436160241664866493320555159707444359191710016994281026177268175775920885779337619491223599597927368609336314570384914656279121511775531920849473568262834166455191187024777511045567119893143002561517993084996086268892052158225212329945044323135382654587029197688791624516734112764726900873382039789796609342452561157841666933141878259601607171137228899568497336310537788768216333682061278482275526234991342374387677825817273569807977305001889011328436069948455421184024254599631535783824529439106152881695483116482639206661102739009952521809408634022651683227634362951183807386842971727218647754383375611071569417570298726882455309311961699769710776308784261345863342285156250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{1427329436145326146069865553879713451673689149639839845218651887116093223590801303950186778313908752428812636937812000392444340426350474492652750233852862438706448475981280897075278896537191516212533423303812089545683570182615649990807718960214716768201700537412528414876370541241782654682367605201333462877245115046496017838730574035783550948578014513378341460008596877921565677506587202583935504063015648486818446906623275016310987595099753520663279213256054253887522824051147407430708207729499411280315709555500290857019470135140772427907352850806169164222925440570176899964761803448202663273876077086389781086727741263012593700886558342010029681235799896766011253622482590222132741326635874882301309714218281735601729473899802052385219369934790853148076633970638671004467654196957909804469260015902491895206764452376445339133982137921102809703759334296116156295388067797776654771654998379674146221244798668140366009758343671452281521949347186392534457391880358227266513379790709639423847794916502490905605072915815111421268420249112837212647860011747574404052451639942430221688870528561979271191366353567293570007339362297257452051273776199762182833767950979108205069126961027502633910578987559342242585461045743934321360974564165183417446161971080334408936932889541285615807254745124558884568783791314710329724653709880976440425393991593299755006274484403003743978287086250420164396030842639087061919826815533289465481413284614006798816193383453947269100461874461922407520534484936343943435748347650911497543405772134924591364557211667665723345195417334874983906735952551881685473071861383002039360922764569881017672358194639760842173143305491257832049198883809723672653783683996973296343852254678250319461666265606563928628341873377075027787972981025167863028983139056170885007831038655583521760297709367122955535178319611425027841994673237423797775015860369697645097933724619308095184038982901771268906501227804194529735366633080364584641764762298055302812975076506430644791084548434493320483535485880713005537625704450786607371651436598799282836107315759891239818265879136301630283608191843514647882873666182826090740221939462557304471821833272438447166878907414751792417268925443083953946756373724763671409485679610380672131923848258222338649067300502646696909357939495382903085781021071425557173443477566602171522096111831161374597390717125137165889604398167333641307718327132531896730805830992839942121561554413493412781915694834489785939431900796742814802102204395310452090146276233667433896674390113293972509464794427572345381779963272710823688856967746964822123032870871140159159637136817458299754939740140357731385278683584740980045509517703154648818644422645525724916262865678096152482334114370757990346771246328777155802135195977518038522328848972426651519043178427818273859507880618097099868850435888386880736604390538560397246878934391747777310876588870901200087604263318822434085786641629021673743798124940667887797888913252266367104521670759158015608678195982587470514541663037008212703234787641621986501535525129634460516976351371172188457912855322294997797416234270622922284026134496142077755415704812227414471878418751622138040041362447538128296123018667513415801196978591491496330804760667964627882779669450993691906632241292055530218410772131162199460818684425469254851372230943916915889573889762092349588957495928461228182276516582356540890477800827235418882839694986437308741786194814822157063302758756239601412987})}{861S_{A}}
S_{A}\neq 0
Compartir
Copiado a portapapeis
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}