Calcular
\frac{\left(x-2\right)\left(8x-3\right)x^{8}}{12}
Expandir
\frac{2x^{10}}{3}-\frac{19x^{9}}{12}+\frac{x^{8}}{2}
Gráfico
Compartir
Copiado a portapapeis
\frac{\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4}\left(2x^{2}-\frac{3}{4}x\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar \frac{1}{3}x^{3}+\frac{2}{5}x^{2}-\frac{1}{2}x por x.
\frac{\left(2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5}\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4} por 2x^{2}-\frac{3}{4}x.
\frac{\frac{19}{8}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar 2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5} por x-\frac{1}{2}x^{2} e combina os termos semellantes.
\frac{\frac{19}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Multiplica \frac{19}{8} e 3 para obter \frac{57}{8}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Multiplica -1 e 3 para obter -3.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{9}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{6}}{-\frac{3}{2}x^{2}}
Multiplica -\frac{3}{4} e 3 para obter -\frac{9}{4}.
\frac{\frac{1}{80}\times 10x\left(8x-3\right)\left(-x+2\right)x^{3}x^{6}}{-\frac{3}{2}x^{2}}
Factoriza as expresións que aínda non o están.
\frac{\frac{1}{80}\times 10\left(8x-3\right)\left(-x+2\right)x^{2}x^{6}}{-\frac{3}{2}}
Anula xx no numerador e no denominador.
\frac{-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}}{-\frac{3}{2}}
Expande a expresión.
\frac{\left(-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}\right)\times 2}{-3}
Divide -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} entre -\frac{3}{2} mediante a multiplicación de -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} polo recíproco de -\frac{3}{2}.
\frac{-2x^{10}+\frac{19}{4}x^{9}-\frac{3}{2}x^{8}}{-3}
Usa a propiedade distributiva para multiplicar -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} por 2.
\frac{\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4}\left(2x^{2}-\frac{3}{4}x\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar \frac{1}{3}x^{3}+\frac{2}{5}x^{2}-\frac{1}{2}x por x.
\frac{\left(2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5}\right)\left(x-\frac{1}{2}x^{2}\right)}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{4} por 2x^{2}-\frac{3}{4}x.
\frac{\frac{19}{8}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Usa a propiedade distributiva para multiplicar 2\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{5} por x-\frac{1}{2}x^{2} e combina os termos semellantes.
\frac{\frac{19}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Multiplica \frac{19}{8} e 3 para obter \frac{57}{8}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\times \frac{\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)}{\frac{1}{3}}x^{6}}{-\frac{3}{2}x^{2}}
Multiplica -1 e 3 para obter -3.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{3}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)\times 3x^{6}}{-\frac{3}{2}x^{2}}
Divide \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) entre \frac{1}{3} mediante a multiplicación de \frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right) polo recíproco de \frac{1}{3}.
\frac{\frac{57}{8}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{7}-3\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{8}-\frac{9}{4}\left(\frac{1}{3}x^{4}+\frac{2}{5}x^{3}-\frac{1}{2}x^{2}-2x\left(\frac{1}{5}x^{2}-\frac{1}{4}x\right)\right)x^{6}}{-\frac{3}{2}x^{2}}
Multiplica -\frac{3}{4} e 3 para obter -\frac{9}{4}.
\frac{\frac{1}{80}\times 10x\left(8x-3\right)\left(-x+2\right)x^{3}x^{6}}{-\frac{3}{2}x^{2}}
Factoriza as expresións que aínda non o están.
\frac{\frac{1}{80}\times 10\left(8x-3\right)\left(-x+2\right)x^{2}x^{6}}{-\frac{3}{2}}
Anula xx no numerador e no denominador.
\frac{-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}}{-\frac{3}{2}}
Expande a expresión.
\frac{\left(-x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8}\right)\times 2}{-3}
Divide -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} entre -\frac{3}{2} mediante a multiplicación de -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} polo recíproco de -\frac{3}{2}.
\frac{-2x^{10}+\frac{19}{4}x^{9}-\frac{3}{2}x^{8}}{-3}
Usa a propiedade distributiva para multiplicar -x^{10}+\frac{19}{8}x^{9}-\frac{3}{4}x^{8} por 2.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}