Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x^{4} por \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Dado que \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} e \frac{x^{4}+1}{x^{2}+1} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Fai as multiplicacións en x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combina como termos en x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiplica \frac{x^{6}-1}{x^{2}+1} por \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula x^{2}+1 no numerador e no denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factoriza as expresións que aínda non o están en \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) no numerador e no denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 15 por \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Dado que \frac{15\left(x+6\right)}{x+6} e \frac{x-4}{x+6} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Fai as multiplicacións en 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combina como termos en 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Divide \frac{14x+94}{x+6} entre \frac{x^{2}+29x+78}{3x^{2}+12x-36} mediante a multiplicación de \frac{14x+94}{x+6} polo recíproco de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Factoriza as expresións que aínda non o están.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anula x+6 no numerador e no denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expande a expresión.
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x^{4} por \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Dado que \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} e \frac{x^{4}+1}{x^{2}+1} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Fai as multiplicacións en x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combina como termos en x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Multiplica \frac{x^{6}-1}{x^{2}+1} por \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula x^{2}+1 no numerador e no denominador.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Factoriza as expresións que aínda non o están en \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Anula \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) no numerador e no denominador.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 15 por \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Dado que \frac{15\left(x+6\right)}{x+6} e \frac{x-4}{x+6} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Fai as multiplicacións en 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Combina como termos en 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Divide \frac{14x+94}{x+6} entre \frac{x^{2}+29x+78}{3x^{2}+12x-36} mediante a multiplicación de \frac{14x+94}{x+6} polo recíproco de \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Factoriza as expresións que aínda non o están.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Anula x+6 no numerador e no denominador.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Expande a expresión.