Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(\frac{4}{25}\times \left(\frac{1}{4}\right)^{2}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula -\frac{2}{5} á potencia de 2 e obtén \frac{4}{25}.
\frac{\left(\frac{4}{25}\times \frac{1}{16}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula \frac{1}{4} á potencia de 2 e obtén \frac{1}{16}.
\frac{\left(\frac{1}{100}\right)^{2}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Multiplica \frac{4}{25} e \frac{1}{16} para obter \frac{1}{100}.
\frac{\frac{1}{10000}}{\left(5^{2}\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula \frac{1}{100} á potencia de 2 e obtén \frac{1}{10000}.
\frac{\frac{1}{10000}}{\left(25\times 2^{2}\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 5 á potencia de 2 e obtén 25.
\frac{\frac{1}{10000}}{\left(25\times 4\right)^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 2 á potencia de 2 e obtén 4.
\frac{\frac{1}{10000}}{100^{-2}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Multiplica 25 e 4 para obter 100.
\frac{\frac{1}{10000}}{\frac{1}{10000}}-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Calcula 100 á potencia de -2 e obtén \frac{1}{10000}.
1-\frac{\left(\frac{4}{5}\right)^{-5}\left(-\frac{4}{5}\right)^{-4}}{\left(\frac{4}{5}\right)^{-7}}
Divide \frac{1}{10000} entre \frac{1}{10000} para obter 1.
1-\left(-\frac{4}{5}\right)^{-4}\times \left(\frac{4}{5}\right)^{2}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador.
1-\frac{625}{256}\times \left(\frac{4}{5}\right)^{2}
Calcula -\frac{4}{5} á potencia de -4 e obtén \frac{625}{256}.
1-\frac{625}{256}\times \frac{16}{25}
Calcula \frac{4}{5} á potencia de 2 e obtén \frac{16}{25}.
1-\frac{25}{16}
Multiplica \frac{625}{256} e \frac{16}{25} para obter \frac{25}{16}.
-\frac{9}{16}
Resta \frac{25}{16} de 1 para obter -\frac{9}{16}.