Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(\left(\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 3 e 4 para obter 7.
\frac{\left(\frac{4}{9}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{2}{3} á potencia de 2 e obtén \frac{4}{9}.
\frac{\left(\frac{4}{9}\left(-\frac{128}{2187}\right)\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} á potencia de 7 e obtén -\frac{128}{2187}.
\frac{\left(-\frac{512}{19683}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiplica \frac{4}{9} e -\frac{128}{2187} para obter -\frac{512}{19683}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{512}{19683} á potencia de 2 e obtén \frac{262144}{387420489}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{32}{243}\right)\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} á potencia de 5 e obtén -\frac{32}{243}.
\frac{\frac{262144}{387420489}}{\left(\frac{32}{243}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
O contrario de -\frac{32}{243} é \frac{32}{243}.
\frac{\frac{262144}{387420489}}{\frac{32768}{14348907}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{32}{243} á potencia de 3 e obtén \frac{32768}{14348907}.
\frac{262144}{387420489}\times \frac{14348907}{32768}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Divide \frac{262144}{387420489} entre \frac{32768}{14348907} mediante a multiplicación de \frac{262144}{387420489} polo recíproco de \frac{32768}{14348907}.
\frac{8}{27}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiplica \frac{262144}{387420489} e \frac{14348907}{32768} para obter \frac{8}{27}.
\frac{8}{27}-\frac{8}{27}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calcula -\frac{2}{3} á potencia de 3 e obtén -\frac{8}{27}.
0-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Resta \frac{8}{27} de \frac{8}{27} para obter 0.
0-\frac{16}{2401}\left(-\frac{7}{4}\right)^{4}
Calcula \frac{2}{7} á potencia de 4 e obtén \frac{16}{2401}.
0-\frac{16}{2401}\times \frac{2401}{256}
Calcula -\frac{7}{4} á potencia de 4 e obtén \frac{2401}{256}.
0-\frac{1}{16}
Multiplica \frac{16}{2401} e \frac{2401}{256} para obter \frac{1}{16}.
-\frac{1}{16}
Resta \frac{1}{16} de 0 para obter -\frac{1}{16}.