Scipeáil chuig an bpríomhábhar
Microsoft
|
Math Solver
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Bunúsach
ailgéabar
triantánacht
calcalas
Staitisticí
Maitrísí
Carachtair
mode(2,4,5,3,2,4,5,6,4,3,2)
Luacháil
2,4
Tráth na gCeist
5 fadhbanna cosúil le:
mode(2,4,5,3,2,4,5,6,4,3,2)
Fadhbanna den chineál céanna ó Chuardach Gréasáin
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Tuilleadh Míreanna
Roinn
Cóipeáil
Cóipeáladh go dtí an ghearrthaisce
Fadhbanna Comhchosúla
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Ar ais go barr