Scipeáil chuig an bpríomhábhar
Microsoft
|
Math Solver
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Bunúsach
ailgéabar
triantánacht
calcalas
Staitisticí
Maitrísí
Carachtair
Luacháil
5
Tráth na gCeist
Limits
5 fadhbanna cosúil le:
\lim_{ x \rightarrow 0 } 5
Fadhbanna den chineál céanna ó Chuardach Gréasáin
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Tuilleadh Míreanna
Roinn
Cóipeáil
Cóipeáladh go dtí an ghearrthaisce
Fadhbanna Comhchosúla
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Ar ais go barr