Scipeáil chuig an bpríomhábhar
Microsoft
|
Math Solver
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Réiteach
Cleachtadh
Seinn
Topaicí
Réamh-Ailgéabar
Meán
Mód
An Fachtóir Coitianta is Mó
An t-iolra is lú coitianta
Ord na nOibríochtaí
Codáin
Codáin Mheasctha
Príomh-Fhachtóiriú
Easpónant
Fréamhacha
Ailgéabar
Comhcheangail Cosúil le Téarmaí
Réitigh le haghaidh athróg
Fachtóir
Leathnaigh
Codáin a Mheas
Cothromóidí Líneacha
Cothromóidí Ceathairshruthacha
Neamhionannais
Córais Cothromóidí
Máithreáin
Triantánacht
Simpligh
Meastóireacht
Graif
Cothromóidí a Réiteach
Calcalas
Díorthaigh
Integrals
Teorainneacha
Ionchuir Ailgéabar
Ionchuir Triantánachta
Ionchuir Calcalais
Ionchuir Maitrís
Bunúsach
ailgéabar
triantánacht
calcalas
Staitisticí
Maitrísí
Carachtair
Luacháil
4
Féach ar chéimeanna réitigh
Céimeanna ag Baint Úsáid as Sainiú Díorthaigh
\frac { d } { d x } ( 4 x )
Is é díorthach ax^{n} ná nax^{n-1}.
4x^{1-1}
Dealaigh 1 ó 1.
4x^{0}
Do théarma ar bith t ach amháin 0, t^{0}=1.
4\times 1
Do théarma ar bith t, t\times 1=t agus 1t=t.
4
Difreálaigh w.r.t. x
0
Tráth na gCeist
Differentiation
5 fadhbanna cosúil le:
\frac { d } { d x } ( 4 x )
Fadhbanna den chineál céanna ó Chuardach Gréasáin
How to calculate \frac {\mathrm d}{\mathrm dx} {x!} ?
https://math.stackexchange.com/questions/2097127/how-to-calculate-frac-mathrm-d-mathrm-dx-x
It does not a priori make sense to differentiate x! because the domain of x\mapsto x! is \mathbf N, not \mathbf R (or anything else supporting a good notion of differentiation, like \mathbf C ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Differentiating the polynomial x^3 - 4x +6
https://math.stackexchange.com/q/65332
Everything is correct, except that the derivative of a constant (like 6) is always 0. You can still see this fact from the power rule. Write 6 as 6x^0. The power rule says that the derivative is 6 \cdot 0 x^{-1} ...
How do I handle dx in u-substitution?
https://math.stackexchange.com/questions/927265/how-do-i-handle-dx-in-u-substitution
If you choose u=x^2+1, then taking the derivative with respect to x gives: \frac{\textrm{d}u}{\textrm{d}x}=2x. Therefore \textrm{d}u=2x\textrm{d}x or x\textrm{d}x=\textrm{d}u/2. Now your ...
Tuilleadh Míreanna
Roinn
Cóipeáil
Cóipeáladh go dtí an ghearrthaisce
4x^{1-1}
Is é díorthach ax^{n} ná nax^{n-1}.
4x^{0}
Dealaigh 1 ó 1.
4\times 1
Do théarma ar bith t ach amháin 0, t^{0}=1.
4
Do théarma ar bith t, t\times 1=t agus 1t=t.
Fadhbanna Comhchosúla
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
Ar ais go barr