Réitigh do y.
y=\frac{1}{3628800}\approx 0.000000276
Sann y
y≔\frac{1}{3628800}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{2\times 3}}{4}}{5}}{6}}{7}}{8}}{9}}{10}
Scríobh \frac{\frac{1}{2}}{3} mar chodán aonair.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{6}}{4}}{5}}{6}}{7}}{8}}{9}}{10}
Méadaigh 2 agus 3 chun 6 a fháil.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{6\times 4}}{5}}{6}}{7}}{8}}{9}}{10}
Scríobh \frac{\frac{1}{6}}{4} mar chodán aonair.
y=\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}{24}}{5}}{6}}{7}}{8}}{9}}{10}
Méadaigh 6 agus 4 chun 24 a fháil.
y=\frac{\frac{\frac{\frac{\frac{\frac{1}{24\times 5}}{6}}{7}}{8}}{9}}{10}
Scríobh \frac{\frac{1}{24}}{5} mar chodán aonair.
y=\frac{\frac{\frac{\frac{\frac{\frac{1}{120}}{6}}{7}}{8}}{9}}{10}
Méadaigh 24 agus 5 chun 120 a fháil.
y=\frac{\frac{\frac{\frac{\frac{1}{120\times 6}}{7}}{8}}{9}}{10}
Scríobh \frac{\frac{1}{120}}{6} mar chodán aonair.
y=\frac{\frac{\frac{\frac{\frac{1}{720}}{7}}{8}}{9}}{10}
Méadaigh 120 agus 6 chun 720 a fháil.
y=\frac{\frac{\frac{\frac{1}{720\times 7}}{8}}{9}}{10}
Scríobh \frac{\frac{1}{720}}{7} mar chodán aonair.
y=\frac{\frac{\frac{\frac{1}{5040}}{8}}{9}}{10}
Méadaigh 720 agus 7 chun 5040 a fháil.
y=\frac{\frac{\frac{1}{5040\times 8}}{9}}{10}
Scríobh \frac{\frac{1}{5040}}{8} mar chodán aonair.
y=\frac{\frac{\frac{1}{40320}}{9}}{10}
Méadaigh 5040 agus 8 chun 40320 a fháil.
y=\frac{\frac{1}{40320\times 9}}{10}
Scríobh \frac{\frac{1}{40320}}{9} mar chodán aonair.
y=\frac{\frac{1}{362880}}{10}
Méadaigh 40320 agus 9 chun 362880 a fháil.
y=\frac{1}{362880\times 10}
Scríobh \frac{\frac{1}{362880}}{10} mar chodán aonair.
y=\frac{1}{3628800}
Méadaigh 362880 agus 10 chun 3628800 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}