Réitigh do x. (complex solution)
\left\{\begin{matrix}\\x=-py\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&p=1\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}\\x=-py\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&p=1\end{matrix}\right.
Réitigh do p. (complex solution)
\left\{\begin{matrix}\\p=1\text{, }&\text{unconditionally}\\p=-\frac{x}{y}\text{, }&y\neq 0\\p\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Réitigh do p.
\left\{\begin{matrix}\\p=1\text{, }&\text{unconditionally}\\p=-\frac{x}{y}\text{, }&y\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
y p ^ { 2 } + ( x - y ) p - x = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
yp^{2}+xp-yp-x=0
Úsáid an t-airí dáileach chun x-y a mhéadú faoi p.
xp-yp-x=-yp^{2}
Bain yp^{2} ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
xp-x=-yp^{2}+yp
Cuir yp leis an dá thaobh.
px-x=py-yp^{2}
Athordaigh na téarmaí.
\left(p-1\right)x=py-yp^{2}
Comhcheangail na téarmaí ar fad ina bhfuil x.
\frac{\left(p-1\right)x}{p-1}=\frac{py\left(1-p\right)}{p-1}
Roinn an dá thaobh faoi -1+p.
x=\frac{py\left(1-p\right)}{p-1}
Má roinntear é faoi -1+p cuirtear an iolrúchán faoi -1+p ar ceal.
x=-py
Roinn yp\left(1-p\right) faoi -1+p.
yp^{2}+xp-yp-x=0
Úsáid an t-airí dáileach chun x-y a mhéadú faoi p.
xp-yp-x=-yp^{2}
Bain yp^{2} ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
xp-x=-yp^{2}+yp
Cuir yp leis an dá thaobh.
px-x=py-yp^{2}
Athordaigh na téarmaí.
\left(p-1\right)x=py-yp^{2}
Comhcheangail na téarmaí ar fad ina bhfuil x.
\frac{\left(p-1\right)x}{p-1}=\frac{py\left(1-p\right)}{p-1}
Roinn an dá thaobh faoi -1+p.
x=\frac{py\left(1-p\right)}{p-1}
Má roinntear é faoi -1+p cuirtear an iolrúchán faoi -1+p ar ceal.
x=-py
Roinn yp\left(1-p\right) faoi -1+p.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}