Réitigh do E. (complex solution)
\left\{\begin{matrix}E=-\frac{yc^{\frac{t}{4}}}{1-c^{\frac{t}{4}}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }c=e^{-\frac{\pi n_{1}iRe(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}-\frac{\pi n_{1}Im(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}}\\E\in \mathrm{C}\text{, }&\left(c=0\text{ and }t\neq 0\right)\text{ or }\left(y=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }c=e^{-\frac{\pi n_{1}iRe(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}-\frac{\pi n_{1}Im(t)}{2\times \frac{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}{16}}}\right)\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
y=E-Ec^{\frac{-t}{4}}
Úsáid an t-airí dáileach chun E a mhéadú faoi 1-c^{\frac{-t}{4}}.
E-Ec^{\frac{-t}{4}}=y
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-Ec^{-\frac{t}{4}}+E=y
Athordaigh na téarmaí.
\left(-c^{-\frac{t}{4}}+1\right)E=y
Comhcheangail na téarmaí ar fad ina bhfuil E.
\left(1-c^{-\frac{t}{4}}\right)E=y
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(1-c^{-\frac{t}{4}}\right)E}{1-c^{-\frac{t}{4}}}=\frac{y}{1-c^{-\frac{t}{4}}}
Roinn an dá thaobh faoi -c^{-\frac{1}{4}t}+1.
E=\frac{y}{1-c^{-\frac{t}{4}}}
Má roinntear é faoi -c^{-\frac{1}{4}t}+1 cuirtear an iolrúchán faoi -c^{-\frac{1}{4}t}+1 ar ceal.
E=\frac{yc^{\frac{t}{4}}}{c^{\frac{t}{4}}-1}
Roinn y faoi -c^{-\frac{1}{4}t}+1.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}