Réitigh do x.
x=\frac{1}{2\pi n_{1}+\arcsin(\frac{y}{\sqrt{y^{2}+1}})+\pi }\text{, }n_{1}\in \mathrm{Z}\text{, }\exists n_{3}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{2n_{3}-\frac{2\arcsin(\frac{y}{\sqrt{y^{2}+1}})}{\pi }-1}{4}\text{ and }n_{1}<\frac{2n_{3}-\frac{2\arcsin(\frac{y}{\sqrt{y^{2}+1}})}{\pi }+1}{4}\right)
x=\frac{1}{2\pi n_{2}+\arcsin(\frac{y}{\sqrt{y^{2}+1}})}\text{, }n_{2}\in \mathrm{Z}\text{, }\left(n_{2}\neq 0\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(n_{3}\text{bmod}2=1\text{ and }n_{2}\geq \frac{n_{3}}{2}\text{ and }n_{2}\leq \frac{n_{3}}{2}+1\right)\right)\text{ or }\left(y\neq 0\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(n_{3}\text{bmod}2=1\text{ and }n_{2}\geq \frac{n_{3}}{2}\text{ and }n_{2}\leq \frac{n_{3}}{2}+1\right)\right)
Réitigh do y.
y=\tan(\frac{1}{x})
x\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}