Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Roinn

x\left(2+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Iolraigh an dá thaobh den chothromóid faoi 2m\left(3m^{2}+4\right), an comhiolraí is lú de 2\left(3m^{2}+4\right),m,2.
x\left(\frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}+\frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\right)\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 2 faoi \frac{2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)}.
x\times \frac{2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Tá an t-ainmneoir céanna ag \frac{2\times 2\left(3m^{2}+4\right)}{2\left(3m^{2}+4\right)} agus \frac{16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
x\times \frac{12m^{2}+16+16+24m^{2}-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Déan iolrúcháin in 2\times 2\left(3m^{2}+4\right)+16+24m^{2}-9m^{4}.
x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Cumaisc téarmaí comhchosúla in: 12m^{2}+16+16+24m^{2}-9m^{4}.
\frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right)\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Scríobh x\times \frac{36m^{2}+32-9m^{4}}{2\left(3m^{2}+4\right)} mar chodán aonair.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2=2m\left(3m^{2}+4\right)\sqrt{6}
Scríobh \frac{x\left(36m^{2}+32-9m^{4}\right)}{2\left(3m^{2}+4\right)}\left(6m^{2}+8\right) mar chodán aonair.
\frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)\times 2}{2\left(3m^{2}+4\right)}=2m\left(3m^{2}+4\right)\sqrt{6}
Scríobh \frac{x\left(36m^{2}+32-9m^{4}\right)\left(6m^{2}+8\right)}{2\left(3m^{2}+4\right)}\times 2 mar chodán aonair.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=2m\left(3m^{2}+4\right)\sqrt{6}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=\left(6m^{3}+8m\right)\sqrt{6}
Úsáid an t-airí dáileach chun 2m a mhéadú faoi 3m^{2}+4.
\frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Úsáid an t-airí dáileach chun 6m^{3}+8m a mhéadú faoi \sqrt{6}.
\frac{-2\times 9x\left(3m^{2}+4\right)\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)}{3m^{2}+4}=6m^{3}\sqrt{6}+8m\sqrt{6}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{x\left(6m^{2}+8\right)\left(-9m^{4}+36m^{2}+32\right)}{3m^{2}+4}.
-2\times 9x\left(m^{2}-\left(-\frac{2}{3}\sqrt{17}+2\right)\right)\left(m^{2}-\left(\frac{2}{3}\sqrt{17}+2\right)\right)=6m^{3}\sqrt{6}+8m\sqrt{6}
Cealaigh 3m^{2}+4 mar uimhreoir agus ainmneoir.
-18xm^{4}+72xm^{2}+64x=6m^{3}\sqrt{6}+8m\sqrt{6}
Fairsingigh an slonn.
\left(-18m^{4}+72m^{2}+64\right)x=6m^{3}\sqrt{6}+8m\sqrt{6}
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(64+72m^{2}-18m^{4}\right)x=6\sqrt{6}m^{3}+8\sqrt{6}m
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(64+72m^{2}-18m^{4}\right)x}{64+72m^{2}-18m^{4}}=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Roinn an dá thaobh faoi -18m^{4}+72m^{2}+64.
x=\frac{2\sqrt{6}m\left(3m^{2}+4\right)}{64+72m^{2}-18m^{4}}
Má roinntear é faoi -18m^{4}+72m^{2}+64 cuirtear an iolrúchán faoi -18m^{4}+72m^{2}+64 ar ceal.
x=\frac{\sqrt{6}m\left(3m^{2}+4\right)}{32+36m^{2}-9m^{4}}
Roinn 2m\left(3m^{2}+4\right)\sqrt{6} faoi -18m^{4}+72m^{2}+64.