Réitigh do x. (complex solution)
\left\{\begin{matrix}x=-\frac{y\theta +z}{\theta ^{2}}\text{, }&\theta \neq 0\\x\in \mathrm{C}\text{, }&z=0\text{ and }\theta =0\end{matrix}\right.
Réitigh do y. (complex solution)
\left\{\begin{matrix}y=-x\theta -\frac{z}{\theta }\text{, }&\theta \neq 0\\y\in \mathrm{C}\text{, }&z=0\text{ and }\theta =0\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=-\frac{y\theta +z}{\theta ^{2}}\text{, }&\theta \neq 0\\x\in \mathrm{R}\text{, }&z=0\text{ and }\theta =0\end{matrix}\right.
Réitigh do y.
\left\{\begin{matrix}y=-x\theta -\frac{z}{\theta }\text{, }&\theta \neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }\theta =0\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x\theta ^{2}+z=-y\theta
Bain y\theta ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
x\theta ^{2}=-y\theta -z
Bain z ón dá thaobh.
\theta ^{2}x=-y\theta -z
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\theta ^{2}x}{\theta ^{2}}=\frac{-y\theta -z}{\theta ^{2}}
Roinn an dá thaobh faoi \theta ^{2}.
x=\frac{-y\theta -z}{\theta ^{2}}
Má roinntear é faoi \theta ^{2} cuirtear an iolrúchán faoi \theta ^{2} ar ceal.
x=-\frac{y\theta +z}{\theta ^{2}}
Roinn -y\theta -z faoi \theta ^{2}.
y\theta +z=-x\theta ^{2}
Bain x\theta ^{2} ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
y\theta =-x\theta ^{2}-z
Bain z ón dá thaobh.
\theta y=-x\theta ^{2}-z
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\theta y}{\theta }=\frac{-x\theta ^{2}-z}{\theta }
Roinn an dá thaobh faoi \theta .
y=\frac{-x\theta ^{2}-z}{\theta }
Má roinntear é faoi \theta cuirtear an iolrúchán faoi \theta ar ceal.
y=-x\theta -\frac{z}{\theta }
Roinn -x\theta ^{2}-z faoi \theta .
x\theta ^{2}+z=-y\theta
Bain y\theta ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
x\theta ^{2}=-y\theta -z
Bain z ón dá thaobh.
\theta ^{2}x=-y\theta -z
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\theta ^{2}x}{\theta ^{2}}=\frac{-y\theta -z}{\theta ^{2}}
Roinn an dá thaobh faoi \theta ^{2}.
x=\frac{-y\theta -z}{\theta ^{2}}
Má roinntear é faoi \theta ^{2} cuirtear an iolrúchán faoi \theta ^{2} ar ceal.
x=-\frac{y\theta +z}{\theta ^{2}}
Roinn -y\theta -z faoi \theta ^{2}.
y\theta +z=-x\theta ^{2}
Bain x\theta ^{2} ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
y\theta =-x\theta ^{2}-z
Bain z ón dá thaobh.
\theta y=-x\theta ^{2}-z
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\theta y}{\theta }=\frac{-x\theta ^{2}-z}{\theta }
Roinn an dá thaobh faoi \theta .
y=\frac{-x\theta ^{2}-z}{\theta }
Má roinntear é faoi \theta cuirtear an iolrúchán faoi \theta ar ceal.
y=-x\theta -\frac{z}{\theta }
Roinn -x\theta ^{2}-z faoi \theta .
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}