Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

±18,±9,±6,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 18 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=2
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{3}-x^{2}-3x-9=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{4}-3x^{3}-x^{2}-3x+18 faoi x-2 chun x^{3}-x^{2}-3x-9 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±9,±3,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta -9 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=3
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}+2x+3=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{3}-x^{2}-3x-9 faoi x-3 chun x^{2}+2x+3 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-2±\sqrt{2^{2}-4\times 1\times 3}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, 2 in ionad b agus 3 in ionad c san fhoirmle chearnach.
x=\frac{-2±\sqrt{-8}}{2}
Déan áirimh.
x=-\sqrt{2}i-1 x=-1+\sqrt{2}i
Réitigh an chothromóid x^{2}+2x+3=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=2 x=3 x=-\sqrt{2}i-1 x=-1+\sqrt{2}i
Liostaigh na réitigh ar fad a aimsíodh.
±18,±9,±6,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 18 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=2
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{3}-x^{2}-3x-9=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{4}-3x^{3}-x^{2}-3x+18 faoi x-2 chun x^{3}-x^{2}-3x-9 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±9,±3,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta -9 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=3
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}+2x+3=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{3}-x^{2}-3x-9 faoi x-3 chun x^{2}+2x+3 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-2±\sqrt{2^{2}-4\times 1\times 3}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, 2 in ionad b agus 3 in ionad c san fhoirmle chearnach.
x=\frac{-2±\sqrt{-8}}{2}
Déan áirimh.
x\in \emptyset
Níl aon réitigh ann toisc nach bhfuil fréamh chearnach uimhreach diúltaí sainithe sa réimse réadach.
x=2 x=3
Liostaigh na réitigh ar fad a aimsíodh.