Réitigh do x.
x=-4
x=10
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=-6 ab=-40
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}-6x-40 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-40 2,-20 4,-10 5,-8
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Áirigh an tsuim do gach péire.
a=-10 b=4
Is é an réiteach ná an péire a thugann an tsuim -6.
\left(x-10\right)\left(x+4\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=10 x=-4
Réitigh x-10=0 agus x+4=0 chun réitigh cothromóide a fháil.
a+b=-6 ab=1\left(-40\right)=-40
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-40 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-40 2,-20 4,-10 5,-8
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Áirigh an tsuim do gach péire.
a=-10 b=4
Is é an réiteach ná an péire a thugann an tsuim -6.
\left(x^{2}-10x\right)+\left(4x-40\right)
Athscríobh x^{2}-6x-40 mar \left(x^{2}-10x\right)+\left(4x-40\right).
x\left(x-10\right)+4\left(x-10\right)
Fág x as an áireamh sa chead ghrúpa agus 4 sa dara grúpa.
\left(x-10\right)\left(x+4\right)
Fág an téarma coitianta x-10 as an áireamh ag úsáid airí dháiligh.
x=10 x=-4
Réitigh x-10=0 agus x+4=0 chun réitigh cothromóide a fháil.
x^{2}-6x-40=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-40\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -6 in ionad b, agus -40 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-40\right)}}{2}
Cearnóg -6.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2}
Méadaigh -4 faoi -40.
x=\frac{-\left(-6\right)±\sqrt{196}}{2}
Suimigh 36 le 160?
x=\frac{-\left(-6\right)±14}{2}
Tóg fréamh chearnach 196.
x=\frac{6±14}{2}
Tá 6 urchomhairleach le -6.
x=\frac{20}{2}
Réitigh an chothromóid x=\frac{6±14}{2} nuair is ionann ± agus plus. Suimigh 6 le 14?
x=10
Roinn 20 faoi 2.
x=-\frac{8}{2}
Réitigh an chothromóid x=\frac{6±14}{2} nuair is ionann ± agus míneas. Dealaigh 14 ó 6.
x=-4
Roinn -8 faoi 2.
x=10 x=-4
Tá an chothromóid réitithe anois.
x^{2}-6x-40=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}-6x-40-\left(-40\right)=-\left(-40\right)
Cuir 40 leis an dá thaobh den chothromóid.
x^{2}-6x=-\left(-40\right)
Má dhealaítear -40 uaidh féin faightear 0.
x^{2}-6x=40
Dealaigh -40 ó 0.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
Roinn -6, comhéifeacht an téarma x, faoi 2 chun -3 a fháil. Ansin suimigh uimhir chearnach -3 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-6x+9=40+9
Cearnóg -3.
x^{2}-6x+9=49
Suimigh 40 le 9?
\left(x-3\right)^{2}=49
Fachtóirigh x^{2}-6x+9. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-3=7 x-3=-7
Simpligh.
x=10 x=-4
Cuir 3 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}