Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}-3x+53-3x=44
Bain 3x ón dá thaobh.
x^{2}-6x+53=44
Comhcheangail -3x agus -3x chun -6x a fháil.
x^{2}-6x+53-44=0
Bain 44 ón dá thaobh.
x^{2}-6x+9=0
Dealaigh 44 ó 53 chun 9 a fháil.
a+b=-6 ab=9
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}-6x+9 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-9 -3,-3
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 9.
-1-9=-10 -3-3=-6
Áirigh an tsuim do gach péire.
a=-3 b=-3
Is é an réiteach ná an péire a thugann an tsuim -6.
\left(x-3\right)\left(x-3\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
\left(x-3\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
x=3
Réitigh x-3=0 chun réiteach cothromóide a fháil.
x^{2}-3x+53-3x=44
Bain 3x ón dá thaobh.
x^{2}-6x+53=44
Comhcheangail -3x agus -3x chun -6x a fháil.
x^{2}-6x+53-44=0
Bain 44 ón dá thaobh.
x^{2}-6x+9=0
Dealaigh 44 ó 53 chun 9 a fháil.
a+b=-6 ab=1\times 9=9
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx+9 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-9 -3,-3
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 9.
-1-9=-10 -3-3=-6
Áirigh an tsuim do gach péire.
a=-3 b=-3
Is é an réiteach ná an péire a thugann an tsuim -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Athscríobh x^{2}-6x+9 mar \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Fág x as an áireamh sa chead ghrúpa agus -3 sa dara grúpa.
\left(x-3\right)\left(x-3\right)
Fág an téarma coitianta x-3 as an áireamh ag úsáid airí dháiligh.
\left(x-3\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
x=3
Réitigh x-3=0 chun réiteach cothromóide a fháil.
x^{2}-3x+53-3x=44
Bain 3x ón dá thaobh.
x^{2}-6x+53=44
Comhcheangail -3x agus -3x chun -6x a fháil.
x^{2}-6x+53-44=0
Bain 44 ón dá thaobh.
x^{2}-6x+9=0
Dealaigh 44 ó 53 chun 9 a fháil.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -6 in ionad b, agus 9 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Cearnóg -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Méadaigh -4 faoi 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Suimigh 36 le -36?
x=-\frac{-6}{2}
Tóg fréamh chearnach 0.
x=\frac{6}{2}
Tá 6 urchomhairleach le -6.
x=3
Roinn 6 faoi 2.
x^{2}-3x+53-3x=44
Bain 3x ón dá thaobh.
x^{2}-6x+53=44
Comhcheangail -3x agus -3x chun -6x a fháil.
x^{2}-6x=44-53
Bain 53 ón dá thaobh.
x^{2}-6x=-9
Dealaigh 53 ó 44 chun -9 a fháil.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Roinn -6, comhéifeacht an téarma x, faoi 2 chun -3 a fháil. Ansin suimigh uimhir chearnach -3 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-6x+9=-9+9
Cearnóg -3.
x^{2}-6x+9=0
Suimigh -9 le 9?
\left(x-3\right)^{2}=0
Fachtóirigh x^{2}-6x+9. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-3=0 x-3=0
Simpligh.
x=3 x=3
Cuir 3 leis an dá thaobh den chothromóid.
x=3
Tá an chothromóid réitithe anois. Is ionann na réitigh.