Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}+x+2=1
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x^{2}+x+2-1=1-1
Bain 1 ón dá thaobh den chothromóid.
x^{2}+x+2-1=0
Má dhealaítear 1 uaidh féin faightear 0.
x^{2}+x+1=0
Dealaigh 1 ó 2.
x=\frac{-1±\sqrt{1^{2}-4}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 1 in ionad b, agus 1 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4}}{2}
Cearnóg 1.
x=\frac{-1±\sqrt{-3}}{2}
Suimigh 1 le -4?
x=\frac{-1±\sqrt{3}i}{2}
Tóg fréamh chearnach -3.
x=\frac{-1+\sqrt{3}i}{2}
Réitigh an chothromóid x=\frac{-1±\sqrt{3}i}{2} nuair is ionann ± agus plus. Suimigh -1 le i\sqrt{3}?
x=\frac{-\sqrt{3}i-1}{2}
Réitigh an chothromóid x=\frac{-1±\sqrt{3}i}{2} nuair is ionann ± agus míneas. Dealaigh i\sqrt{3} ó -1.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tá an chothromóid réitithe anois.
x^{2}+x+2=1
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}+x+2-2=1-2
Bain 2 ón dá thaobh den chothromóid.
x^{2}+x=1-2
Má dhealaítear 2 uaidh féin faightear 0.
x^{2}+x=-1
Dealaigh 2 ó 1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Roinn 1, comhéifeacht an téarma x, faoi 2 chun \frac{1}{2} a fháil. Ansin suimigh uimhir chearnach \frac{1}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Cearnaigh \frac{1}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Suimigh -1 le \frac{1}{4}?
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Fachtóirigh x^{2}+x+\frac{1}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simpligh.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Bain \frac{1}{2} ón dá thaobh den chothromóid.