Réitigh do x.
x=-8
x=2
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=6 ab=-16
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}+6x-16 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,16 -2,8 -4,4
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -16.
-1+16=15 -2+8=6 -4+4=0
Áirigh an tsuim do gach péire.
a=-2 b=8
Is é an réiteach ná an péire a thugann an tsuim 6.
\left(x-2\right)\left(x+8\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=2 x=-8
Réitigh x-2=0 agus x+8=0 chun réitigh cothromóide a fháil.
a+b=6 ab=1\left(-16\right)=-16
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-16 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,16 -2,8 -4,4
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -16.
-1+16=15 -2+8=6 -4+4=0
Áirigh an tsuim do gach péire.
a=-2 b=8
Is é an réiteach ná an péire a thugann an tsuim 6.
\left(x^{2}-2x\right)+\left(8x-16\right)
Athscríobh x^{2}+6x-16 mar \left(x^{2}-2x\right)+\left(8x-16\right).
x\left(x-2\right)+8\left(x-2\right)
Fág x as an áireamh sa chead ghrúpa agus 8 sa dara grúpa.
\left(x-2\right)\left(x+8\right)
Fág an téarma coitianta x-2 as an áireamh ag úsáid airí dháiligh.
x=2 x=-8
Réitigh x-2=0 agus x+8=0 chun réitigh cothromóide a fháil.
x^{2}+6x-16=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-6±\sqrt{6^{2}-4\left(-16\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 6 in ionad b, agus -16 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-16\right)}}{2}
Cearnóg 6.
x=\frac{-6±\sqrt{36+64}}{2}
Méadaigh -4 faoi -16.
x=\frac{-6±\sqrt{100}}{2}
Suimigh 36 le 64?
x=\frac{-6±10}{2}
Tóg fréamh chearnach 100.
x=\frac{4}{2}
Réitigh an chothromóid x=\frac{-6±10}{2} nuair is ionann ± agus plus. Suimigh -6 le 10?
x=2
Roinn 4 faoi 2.
x=-\frac{16}{2}
Réitigh an chothromóid x=\frac{-6±10}{2} nuair is ionann ± agus míneas. Dealaigh 10 ó -6.
x=-8
Roinn -16 faoi 2.
x=2 x=-8
Tá an chothromóid réitithe anois.
x^{2}+6x-16=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}+6x-16-\left(-16\right)=-\left(-16\right)
Cuir 16 leis an dá thaobh den chothromóid.
x^{2}+6x=-\left(-16\right)
Má dhealaítear -16 uaidh féin faightear 0.
x^{2}+6x=16
Dealaigh -16 ó 0.
x^{2}+6x+3^{2}=16+3^{2}
Roinn 6, comhéifeacht an téarma x, faoi 2 chun 3 a fháil. Ansin suimigh uimhir chearnach 3 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+6x+9=16+9
Cearnóg 3.
x^{2}+6x+9=25
Suimigh 16 le 9?
\left(x+3\right)^{2}=25
Fachtóirigh x^{2}+6x+9. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{25}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+3=5 x+3=-5
Simpligh.
x=2 x=-8
Bain 3 ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}