Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Bain \frac{81}{4} ón dá thaobh.
x^{2}+5x-14=0
Dealaigh \frac{81}{4} ó \frac{25}{4} chun -14 a fháil.
a+b=5 ab=-14
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}+5x-14 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,14 -2,7
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -14.
-1+14=13 -2+7=5
Áirigh an tsuim do gach péire.
a=-2 b=7
Is é an réiteach ná an péire a thugann an tsuim 5.
\left(x-2\right)\left(x+7\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=2 x=-7
Réitigh x-2=0 agus x+7=0 chun réitigh cothromóide a fháil.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Bain \frac{81}{4} ón dá thaobh.
x^{2}+5x-14=0
Dealaigh \frac{81}{4} ó \frac{25}{4} chun -14 a fháil.
a+b=5 ab=1\left(-14\right)=-14
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-14 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,14 -2,7
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -14.
-1+14=13 -2+7=5
Áirigh an tsuim do gach péire.
a=-2 b=7
Is é an réiteach ná an péire a thugann an tsuim 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Athscríobh x^{2}+5x-14 mar \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Fág x as an áireamh sa chead ghrúpa agus 7 sa dara grúpa.
\left(x-2\right)\left(x+7\right)
Fág an téarma coitianta x-2 as an áireamh ag úsáid airí dháiligh.
x=2 x=-7
Réitigh x-2=0 agus x+7=0 chun réitigh cothromóide a fháil.
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=\frac{81}{4}-\frac{81}{4}
Bain \frac{81}{4} ón dá thaobh den chothromóid.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
Má dhealaítear \frac{81}{4} uaidh féin faightear 0.
x^{2}+5x-14=0
Dealaigh \frac{81}{4} ó \frac{25}{4} trí chomhainmneoir a fháil agus na huimhreoirí a dhealú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 5 in ionad b, agus -14 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
Cearnóg 5.
x=\frac{-5±\sqrt{25+56}}{2}
Méadaigh -4 faoi -14.
x=\frac{-5±\sqrt{81}}{2}
Suimigh 25 le 56?
x=\frac{-5±9}{2}
Tóg fréamh chearnach 81.
x=\frac{4}{2}
Réitigh an chothromóid x=\frac{-5±9}{2} nuair is ionann ± agus plus. Suimigh -5 le 9?
x=2
Roinn 4 faoi 2.
x=-\frac{14}{2}
Réitigh an chothromóid x=\frac{-5±9}{2} nuair is ionann ± agus míneas. Dealaigh 9 ó -5.
x=-7
Roinn -14 faoi 2.
x=2 x=-7
Tá an chothromóid réitithe anois.
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
Fachtóirigh x^{2}+5x+\frac{25}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
Simpligh.
x=2 x=-7
Bain \frac{5}{2} ón dá thaobh den chothromóid.