Réitigh do x.
x=-7
x=3
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=4 ab=-21
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}+4x-21 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,21 -3,7
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -21.
-1+21=20 -3+7=4
Áirigh an tsuim do gach péire.
a=-3 b=7
Is é an réiteach ná an péire a thugann an tsuim 4.
\left(x-3\right)\left(x+7\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=3 x=-7
Réitigh x-3=0 agus x+7=0 chun réitigh cothromóide a fháil.
a+b=4 ab=1\left(-21\right)=-21
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-21 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,21 -3,7
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -21.
-1+21=20 -3+7=4
Áirigh an tsuim do gach péire.
a=-3 b=7
Is é an réiteach ná an péire a thugann an tsuim 4.
\left(x^{2}-3x\right)+\left(7x-21\right)
Athscríobh x^{2}+4x-21 mar \left(x^{2}-3x\right)+\left(7x-21\right).
x\left(x-3\right)+7\left(x-3\right)
Fág x as an áireamh sa chead ghrúpa agus 7 sa dara grúpa.
\left(x-3\right)\left(x+7\right)
Fág an téarma coitianta x-3 as an áireamh ag úsáid airí dháiligh.
x=3 x=-7
Réitigh x-3=0 agus x+7=0 chun réitigh cothromóide a fháil.
x^{2}+4x-21=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 4 in ionad b, agus -21 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
Cearnóg 4.
x=\frac{-4±\sqrt{16+84}}{2}
Méadaigh -4 faoi -21.
x=\frac{-4±\sqrt{100}}{2}
Suimigh 16 le 84?
x=\frac{-4±10}{2}
Tóg fréamh chearnach 100.
x=\frac{6}{2}
Réitigh an chothromóid x=\frac{-4±10}{2} nuair is ionann ± agus plus. Suimigh -4 le 10?
x=3
Roinn 6 faoi 2.
x=-\frac{14}{2}
Réitigh an chothromóid x=\frac{-4±10}{2} nuair is ionann ± agus míneas. Dealaigh 10 ó -4.
x=-7
Roinn -14 faoi 2.
x=3 x=-7
Tá an chothromóid réitithe anois.
x^{2}+4x-21=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}+4x-21-\left(-21\right)=-\left(-21\right)
Cuir 21 leis an dá thaobh den chothromóid.
x^{2}+4x=-\left(-21\right)
Má dhealaítear -21 uaidh féin faightear 0.
x^{2}+4x=21
Dealaigh -21 ó 0.
x^{2}+4x+2^{2}=21+2^{2}
Roinn 4, comhéifeacht an téarma x, faoi 2 chun 2 a fháil. Ansin suimigh uimhir chearnach 2 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+4x+4=21+4
Cearnóg 2.
x^{2}+4x+4=25
Suimigh 21 le 4?
\left(x+2\right)^{2}=25
Fachtóirigh x^{2}+4x+4. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{25}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+2=5 x+2=-5
Simpligh.
x=3 x=-7
Bain 2 ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}