Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}+2x+1=5
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x^{2}+2x+1-5=5-5
Bain 5 ón dá thaobh den chothromóid.
x^{2}+2x+1-5=0
Má dhealaítear 5 uaidh féin faightear 0.
x^{2}+2x-4=0
Dealaigh 5 ó 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 2 in ionad b, agus -4 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Cearnóg 2.
x=\frac{-2±\sqrt{4+16}}{2}
Méadaigh -4 faoi -4.
x=\frac{-2±\sqrt{20}}{2}
Suimigh 4 le 16?
x=\frac{-2±2\sqrt{5}}{2}
Tóg fréamh chearnach 20.
x=\frac{2\sqrt{5}-2}{2}
Réitigh an chothromóid x=\frac{-2±2\sqrt{5}}{2} nuair is ionann ± agus plus. Suimigh -2 le 2\sqrt{5}?
x=\sqrt{5}-1
Roinn -2+2\sqrt{5} faoi 2.
x=\frac{-2\sqrt{5}-2}{2}
Réitigh an chothromóid x=\frac{-2±2\sqrt{5}}{2} nuair is ionann ± agus míneas. Dealaigh 2\sqrt{5} ó -2.
x=-\sqrt{5}-1
Roinn -2-2\sqrt{5} faoi 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tá an chothromóid réitithe anois.
\left(x+1\right)^{2}=5
Fachtóirigh x^{2}+2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simpligh.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Bain 1 ón dá thaobh den chothromóid.
x^{2}+2x+1=5
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x^{2}+2x+1-5=5-5
Bain 5 ón dá thaobh den chothromóid.
x^{2}+2x+1-5=0
Má dhealaítear 5 uaidh féin faightear 0.
x^{2}+2x-4=0
Dealaigh 5 ó 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 2 in ionad b, agus -4 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Cearnóg 2.
x=\frac{-2±\sqrt{4+16}}{2}
Méadaigh -4 faoi -4.
x=\frac{-2±\sqrt{20}}{2}
Suimigh 4 le 16?
x=\frac{-2±2\sqrt{5}}{2}
Tóg fréamh chearnach 20.
x=\frac{2\sqrt{5}-2}{2}
Réitigh an chothromóid x=\frac{-2±2\sqrt{5}}{2} nuair is ionann ± agus plus. Suimigh -2 le 2\sqrt{5}?
x=\sqrt{5}-1
Roinn -2+2\sqrt{5} faoi 2.
x=\frac{-2\sqrt{5}-2}{2}
Réitigh an chothromóid x=\frac{-2±2\sqrt{5}}{2} nuair is ionann ± agus míneas. Dealaigh 2\sqrt{5} ó -2.
x=-\sqrt{5}-1
Roinn -2-2\sqrt{5} faoi 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Tá an chothromóid réitithe anois.
\left(x+1\right)^{2}=5
Fachtóirigh x^{2}+2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simpligh.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Bain 1 ón dá thaobh den chothromóid.