Fachtóirigh
\left(x+1\right)\left(x+9\right)
Luacháil
\left(x+1\right)\left(x+9\right)
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
x ^ { 2 } + 10 x + 9 =
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=10 ab=1\times 9=9
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar x^{2}+ax+bx+9 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,9 3,3
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil a agus b araon dearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 9.
1+9=10 3+3=6
Áirigh an tsuim do gach péire.
a=1 b=9
Is é an réiteach ná an péire a thugann an tsuim 10.
\left(x^{2}+x\right)+\left(9x+9\right)
Athscríobh x^{2}+10x+9 mar \left(x^{2}+x\right)+\left(9x+9\right).
x\left(x+1\right)+9\left(x+1\right)
Fág x as an áireamh sa chead ghrúpa agus 9 sa dara grúpa.
\left(x+1\right)\left(x+9\right)
Fág an téarma coitianta x+1 as an áireamh ag úsáid airí dháiligh.
x^{2}+10x+9=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 9}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-10±\sqrt{100-4\times 9}}{2}
Cearnóg 10.
x=\frac{-10±\sqrt{100-36}}{2}
Méadaigh -4 faoi 9.
x=\frac{-10±\sqrt{64}}{2}
Suimigh 100 le -36?
x=\frac{-10±8}{2}
Tóg fréamh chearnach 64.
x=-\frac{2}{2}
Réitigh an chothromóid x=\frac{-10±8}{2} nuair is ionann ± agus plus. Suimigh -10 le 8?
x=-1
Roinn -2 faoi 2.
x=-\frac{18}{2}
Réitigh an chothromóid x=\frac{-10±8}{2} nuair is ionann ± agus míneas. Dealaigh 8 ó -10.
x=-9
Roinn -18 faoi 2.
x^{2}+10x+9=\left(x-\left(-1\right)\right)\left(x-\left(-9\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir -1 in ionad x_{1} agus -9 in ionad x_{2}.
x^{2}+10x+9=\left(x+1\right)\left(x+9\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}