Réitigh do s.
\left\{\begin{matrix}s=\frac{x}{w-c^{3}}\text{, }&w\neq c^{3}\\s\in \mathrm{R}\text{, }&x=0\text{ and }w=c^{3}\end{matrix}\right.
Réitigh do c.
\left\{\begin{matrix}c=\sqrt[3]{w-\frac{x}{s}}\text{, }&s\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }s=0\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
x = s w - s c ^ { 3 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
sw-sc^{3}=x
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-sc^{3}+sw=x
Athordaigh na téarmaí.
\left(-c^{3}+w\right)s=x
Comhcheangail na téarmaí ar fad ina bhfuil s.
\left(w-c^{3}\right)s=x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(w-c^{3}\right)s}{w-c^{3}}=\frac{x}{w-c^{3}}
Roinn an dá thaobh faoi w-c^{3}.
s=\frac{x}{w-c^{3}}
Má roinntear é faoi w-c^{3} cuirtear an iolrúchán faoi w-c^{3} ar ceal.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}