Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x=\frac{6}{6x}+\frac{x}{6x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x agus 6 ná 6x. Méadaigh \frac{1}{x} faoi \frac{6}{6}. Méadaigh \frac{1}{6} faoi \frac{x}{x}.
x=\frac{6+x}{6x}
Tá an t-ainmneoir céanna ag \frac{6}{6x} agus \frac{x}{6x} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
x-\frac{6+x}{6x}=0
Bain \frac{6+x}{6x} ón dá thaobh.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh x faoi \frac{6x}{6x}.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
Tá an t-ainmneoir céanna ag \frac{x\times 6x}{6x} agus \frac{6+x}{6x} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{6x^{2}-6-x}{6x}=0
Déan iolrúcháin in x\times 6x-\left(6+x\right).
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{6x^{2}-6-x}{6x}.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Cealaigh 6 mar uimhreoir agus ainmneoir.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Ní féidir leis an athróg x a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi x.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Chun an mhalairt ar -\frac{1}{12}\sqrt{145}+\frac{1}{12} a aimsiú, aimsigh an mhalairt ar gach téarma.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Tá \frac{1}{12}\sqrt{145} urchomhairleach le -\frac{1}{12}\sqrt{145}.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
Chun an mhalairt ar \frac{1}{12}\sqrt{145}+\frac{1}{12} a aimsiú, aimsigh an mhalairt ar gach téarma.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de x+\frac{1}{12}\sqrt{145}-\frac{1}{12} a iolrú faoi gach téarma de x-\frac{1}{12}\sqrt{145}-\frac{1}{12}.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \sqrt{145} agus \sqrt{145} chun 145 a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail x\left(-\frac{1}{12}\right)\sqrt{145} agus \frac{1}{12}\sqrt{145}x chun 0 a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{1}{12} agus 145 chun \frac{145}{12} a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{145}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{145\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Is féidir an codán \frac{-145}{144} a athscríobh mar -\frac{145}{144} ach an comhartha diúltach a bhaint.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{1\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Is féidir an codán \frac{-1}{144} a athscríobh mar -\frac{1}{144} ach an comhartha diúltach a bhaint.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail x\left(-\frac{1}{12}\right) agus -\frac{1}{12}x chun -\frac{1}{6}x a fháil.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh -\frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail -\frac{1}{144}\sqrt{145} agus \frac{1}{144}\sqrt{145} chun 0 a fháil.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Méadaigh -\frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
Déan na hiolrúcháin sa chodán \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
Tá an t-ainmneoir céanna ag -\frac{145}{144} agus \frac{1}{144} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
Suimigh -145 agus 1 chun -144 a fháil.
x^{2}-\frac{1}{6}x-1=0
Roinn -144 faoi 144 chun -1 a fháil.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\left(-\frac{1}{6}\right)^{2}-4\left(-1\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -\frac{1}{6} in ionad b, agus -1 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-4\left(-1\right)}}{2}
Cearnaigh -\frac{1}{6} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}+4}}{2}
Méadaigh -4 faoi -1.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{145}{36}}}{2}
Suimigh \frac{1}{36} le 4?
x=\frac{-\left(-\frac{1}{6}\right)±\frac{\sqrt{145}}{6}}{2}
Tóg fréamh chearnach \frac{145}{36}.
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2}
Tá \frac{1}{6} urchomhairleach le -\frac{1}{6}.
x=\frac{\sqrt{145}+1}{2\times 6}
Réitigh an chothromóid x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} nuair is ionann ± agus plus. Suimigh \frac{1}{6} le \frac{\sqrt{145}}{6}?
x=\frac{\sqrt{145}+1}{12}
Roinn \frac{1+\sqrt{145}}{6} faoi 2.
x=\frac{1-\sqrt{145}}{2\times 6}
Réitigh an chothromóid x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{145}}{6} ó \frac{1}{6}.
x=\frac{1-\sqrt{145}}{12}
Roinn \frac{1-\sqrt{145}}{6} faoi 2.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
Tá an chothromóid réitithe anois.
x=\frac{6}{6x}+\frac{x}{6x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x agus 6 ná 6x. Méadaigh \frac{1}{x} faoi \frac{6}{6}. Méadaigh \frac{1}{6} faoi \frac{x}{x}.
x=\frac{6+x}{6x}
Tá an t-ainmneoir céanna ag \frac{6}{6x} agus \frac{x}{6x} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
x-\frac{6+x}{6x}=0
Bain \frac{6+x}{6x} ón dá thaobh.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh x faoi \frac{6x}{6x}.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
Tá an t-ainmneoir céanna ag \frac{x\times 6x}{6x} agus \frac{6+x}{6x} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{6x^{2}-6-x}{6x}=0
Déan iolrúcháin in x\times 6x-\left(6+x\right).
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{6x^{2}-6-x}{6x}.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Cealaigh 6 mar uimhreoir agus ainmneoir.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Ní féidir leis an athróg x a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi x.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Chun an mhalairt ar -\frac{1}{12}\sqrt{145}+\frac{1}{12} a aimsiú, aimsigh an mhalairt ar gach téarma.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
Tá \frac{1}{12}\sqrt{145} urchomhairleach le -\frac{1}{12}\sqrt{145}.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
Chun an mhalairt ar \frac{1}{12}\sqrt{145}+\frac{1}{12} a aimsiú, aimsigh an mhalairt ar gach téarma.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de x+\frac{1}{12}\sqrt{145}-\frac{1}{12} a iolrú faoi gach téarma de x-\frac{1}{12}\sqrt{145}-\frac{1}{12}.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \sqrt{145} agus \sqrt{145} chun 145 a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail x\left(-\frac{1}{12}\right)\sqrt{145} agus \frac{1}{12}\sqrt{145}x chun 0 a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{1}{12} agus 145 chun \frac{145}{12} a fháil.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{145}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{145\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Is féidir an codán \frac{-145}{144} a athscríobh mar -\frac{145}{144} ach an comhartha diúltach a bhaint.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh \frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{1\left(-1\right)}{12\times 12}.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Is féidir an codán \frac{-1}{144} a athscríobh mar -\frac{1}{144} ach an comhartha diúltach a bhaint.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail x\left(-\frac{1}{12}\right) agus -\frac{1}{12}x chun -\frac{1}{6}x a fháil.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Méadaigh -\frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Déan na hiolrúcháin sa chodán \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Comhcheangail -\frac{1}{144}\sqrt{145} agus \frac{1}{144}\sqrt{145} chun 0 a fháil.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Méadaigh -\frac{1}{12} faoi -\frac{1}{12} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
Déan na hiolrúcháin sa chodán \frac{-\left(-1\right)}{12\times 12}.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
Tá an t-ainmneoir céanna ag -\frac{145}{144} agus \frac{1}{144} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
Suimigh -145 agus 1 chun -144 a fháil.
x^{2}-\frac{1}{6}x-1=0
Roinn -144 faoi 144 chun -1 a fháil.
x^{2}-\frac{1}{6}x=1
Cuir 1 leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=1+\left(-\frac{1}{12}\right)^{2}
Roinn -\frac{1}{6}, comhéifeacht an téarma x, faoi 2 chun -\frac{1}{12} a fháil. Ansin suimigh uimhir chearnach -\frac{1}{12} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{1}{6}x+\frac{1}{144}=1+\frac{1}{144}
Cearnaigh -\frac{1}{12} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{145}{144}
Suimigh 1 le \frac{1}{144}?
\left(x-\frac{1}{12}\right)^{2}=\frac{145}{144}
Fachtóirigh x^{2}-\frac{1}{6}x+\frac{1}{144}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{145}{144}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{1}{12}=\frac{\sqrt{145}}{12} x-\frac{1}{12}=-\frac{\sqrt{145}}{12}
Simpligh.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
Cuir \frac{1}{12} leis an dá thaobh den chothromóid.