Réitigh do f. (complex solution)
\left\{\begin{matrix}f=\frac{\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}}{g}\text{, }&x\neq iy\text{ and }x\neq -iy\text{ and }g\neq 0\\f\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Réitigh do g. (complex solution)
\left\{\begin{matrix}g=\frac{\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}}{f}\text{, }&x\neq iy\text{ and }x\neq -iy\text{ and }f\neq 0\\g\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Réitigh do f.
\left\{\begin{matrix}f=\frac{1}{g\sqrt{x^{2}+y^{2}}}\text{, }&g\neq 0\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Réitigh do g.
\left\{\begin{matrix}g=\frac{1}{f\sqrt{x^{2}+y^{2}}}\text{, }&x\neq 0\text{ and }f\neq 0\\g\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
fxg\sqrt{x^{2}+y^{2}}=x+y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
gx\sqrt{x^{2}+y^{2}}f=x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{gx\sqrt{x^{2}+y^{2}}f}{gx\sqrt{x^{2}+y^{2}}}=\frac{x}{gx\sqrt{x^{2}+y^{2}}}
Roinn an dá thaobh faoi xg\sqrt{x^{2}+y^{2}}.
f=\frac{x}{gx\sqrt{x^{2}+y^{2}}}
Má roinntear é faoi xg\sqrt{x^{2}+y^{2}} cuirtear an iolrúchán faoi xg\sqrt{x^{2}+y^{2}} ar ceal.
f=\frac{\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}}{g}
Roinn x faoi xg\sqrt{x^{2}+y^{2}}.
fxg\sqrt{x^{2}+y^{2}}=x+y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
fx\sqrt{x^{2}+y^{2}}g=x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{fx\sqrt{x^{2}+y^{2}}g}{fx\sqrt{x^{2}+y^{2}}}=\frac{x}{fx\sqrt{x^{2}+y^{2}}}
Roinn an dá thaobh faoi fx\sqrt{x^{2}+y^{2}}.
g=\frac{x}{fx\sqrt{x^{2}+y^{2}}}
Má roinntear é faoi fx\sqrt{x^{2}+y^{2}} cuirtear an iolrúchán faoi fx\sqrt{x^{2}+y^{2}} ar ceal.
g=\frac{\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}}{f}
Roinn x faoi fx\sqrt{x^{2}+y^{2}}.
fxg\sqrt{x^{2}+y^{2}}=x+y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
gx\sqrt{x^{2}+y^{2}}f=x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{gx\sqrt{x^{2}+y^{2}}f}{gx\sqrt{x^{2}+y^{2}}}=\frac{x}{gx\sqrt{x^{2}+y^{2}}}
Roinn an dá thaobh faoi xg\sqrt{x^{2}+y^{2}}.
f=\frac{x}{gx\sqrt{x^{2}+y^{2}}}
Má roinntear é faoi xg\sqrt{x^{2}+y^{2}} cuirtear an iolrúchán faoi xg\sqrt{x^{2}+y^{2}} ar ceal.
f=\frac{1}{g\sqrt{x^{2}+y^{2}}}
Roinn x faoi xg\sqrt{x^{2}+y^{2}}.
fxg\sqrt{x^{2}+y^{2}}=x+y\frac{\mathrm{d}}{\mathrm{d}x}(y)
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
fx\sqrt{x^{2}+y^{2}}g=x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{fx\sqrt{x^{2}+y^{2}}g}{fx\sqrt{x^{2}+y^{2}}}=\frac{x}{fx\sqrt{x^{2}+y^{2}}}
Roinn an dá thaobh faoi fx\sqrt{x^{2}+y^{2}}.
g=\frac{x}{fx\sqrt{x^{2}+y^{2}}}
Má roinntear é faoi fx\sqrt{x^{2}+y^{2}} cuirtear an iolrúchán faoi fx\sqrt{x^{2}+y^{2}} ar ceal.
g=\frac{1}{f\sqrt{x^{2}+y^{2}}}
Roinn x faoi fx\sqrt{x^{2}+y^{2}}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}