Réitigh do x.
x=\sqrt{361945}+671\approx 1272.618649977
x=671-\sqrt{361945}\approx 69.381350023
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
x + \frac { 120 \times 66 } { 1266 - x } = 76
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Ní féidir leis an athróg x a bheith comhionann le 1266 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Úsáid an t-airí dáileach chun -x+1266 a mhéadú faoi x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Méadaigh 120 agus 66 chun 7920 a fháil.
-x^{2}+1266x+7920=-76x+96216
Úsáid an t-airí dáileach chun 76 a mhéadú faoi -x+1266.
-x^{2}+1266x+7920+76x=96216
Cuir 76x leis an dá thaobh.
-x^{2}+1342x+7920=96216
Comhcheangail 1266x agus 76x chun 1342x a fháil.
-x^{2}+1342x+7920-96216=0
Bain 96216 ón dá thaobh.
-x^{2}+1342x-88296=0
Dealaigh 96216 ó 7920 chun -88296 a fháil.
x=\frac{-1342±\sqrt{1342^{2}-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1 in ionad a, 1342 in ionad b, agus -88296 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1342±\sqrt{1800964-4\left(-1\right)\left(-88296\right)}}{2\left(-1\right)}
Cearnóg 1342.
x=\frac{-1342±\sqrt{1800964+4\left(-88296\right)}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
x=\frac{-1342±\sqrt{1800964-353184}}{2\left(-1\right)}
Méadaigh 4 faoi -88296.
x=\frac{-1342±\sqrt{1447780}}{2\left(-1\right)}
Suimigh 1800964 le -353184?
x=\frac{-1342±2\sqrt{361945}}{2\left(-1\right)}
Tóg fréamh chearnach 1447780.
x=\frac{-1342±2\sqrt{361945}}{-2}
Méadaigh 2 faoi -1.
x=\frac{2\sqrt{361945}-1342}{-2}
Réitigh an chothromóid x=\frac{-1342±2\sqrt{361945}}{-2} nuair is ionann ± agus plus. Suimigh -1342 le 2\sqrt{361945}?
x=671-\sqrt{361945}
Roinn -1342+2\sqrt{361945} faoi -2.
x=\frac{-2\sqrt{361945}-1342}{-2}
Réitigh an chothromóid x=\frac{-1342±2\sqrt{361945}}{-2} nuair is ionann ± agus míneas. Dealaigh 2\sqrt{361945} ó -1342.
x=\sqrt{361945}+671
Roinn -1342-2\sqrt{361945} faoi -2.
x=671-\sqrt{361945} x=\sqrt{361945}+671
Tá an chothromóid réitithe anois.
\left(-x+1266\right)x+120\times 66=76\left(-x+1266\right)
Ní féidir leis an athróg x a bheith comhionann le 1266 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi -x+1266.
-x^{2}+1266x+120\times 66=76\left(-x+1266\right)
Úsáid an t-airí dáileach chun -x+1266 a mhéadú faoi x.
-x^{2}+1266x+7920=76\left(-x+1266\right)
Méadaigh 120 agus 66 chun 7920 a fháil.
-x^{2}+1266x+7920=-76x+96216
Úsáid an t-airí dáileach chun 76 a mhéadú faoi -x+1266.
-x^{2}+1266x+7920+76x=96216
Cuir 76x leis an dá thaobh.
-x^{2}+1342x+7920=96216
Comhcheangail 1266x agus 76x chun 1342x a fháil.
-x^{2}+1342x=96216-7920
Bain 7920 ón dá thaobh.
-x^{2}+1342x=88296
Dealaigh 7920 ó 96216 chun 88296 a fháil.
\frac{-x^{2}+1342x}{-1}=\frac{88296}{-1}
Roinn an dá thaobh faoi -1.
x^{2}+\frac{1342}{-1}x=\frac{88296}{-1}
Má roinntear é faoi -1 cuirtear an iolrúchán faoi -1 ar ceal.
x^{2}-1342x=\frac{88296}{-1}
Roinn 1342 faoi -1.
x^{2}-1342x=-88296
Roinn 88296 faoi -1.
x^{2}-1342x+\left(-671\right)^{2}=-88296+\left(-671\right)^{2}
Roinn -1342, comhéifeacht an téarma x, faoi 2 chun -671 a fháil. Ansin suimigh uimhir chearnach -671 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-1342x+450241=-88296+450241
Cearnóg -671.
x^{2}-1342x+450241=361945
Suimigh -88296 le 450241?
\left(x-671\right)^{2}=361945
Fachtóirigh x^{2}-1342x+450241. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-671\right)^{2}}=\sqrt{361945}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-671=\sqrt{361945} x-671=-\sqrt{361945}
Simpligh.
x=\sqrt{361945}+671 x=671-\sqrt{361945}
Cuir 671 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}